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The subject matter of the topic is connected with the study of some aspects of 

generalization of Fibonacci numbers. The aim of the Research Project is to study various 

properties of the family of generalized Fibonacci numbers.  

In this chapter we present the fundamental symbols, definitions, known facts and some 

preliminary results from the Theory of Numbers and also results connected with elementary 

properties pursue the essence of the chapters of this research work. The notations and concepts 

presented here will be used throughout the research work without any further explanation. The 

proof of some known results mentioned here can be found in Burton [6], Dickson [10], Apostol 

[2] or any book of elementary Number Theory.  

 Throughout the thesis, the notations and  stands for the usual “summation” and 

“product” respectively, where the range will be indicated explicitly there. Also by “induction” 

we mean the usual process of mathematical induction. 

 1.1 Preliminaries and Notations: 

1.1.1 The Divisibility relation: 

An integer a is said to be divisible by an integer 0b  , in symbols /b a , if there exists 

some integer c such that a bc . In this case we may also say b divides a, b is a factor of a, a is 

divisible by b or a is a multiple of b. If b is not a factor of a then we write b ∤ a. 

Divisibility properties: Let a, b, c, s and t be any integers. Then 

(i) If /a b  and /b c , then /a c . 

(ii) If /a b  and /a c , then / ( )a sb tc . 

(iii) If /a b , then /a bc . 

(iv) If /a b and /c d , then /ac bd . 

1.1.2 The Greatest Common Divisor:  

If /c a  and /c b , then we say that c is a common divisor of a and b. The greatest 

common divisor (gcd) of two positive integers a and b is the largest positive integer that divides 

both a and b and it is denoted by gcd( , )a b . 

Symbolically, we say that a positive integer d is the gcd of two positive integers a and b 

if (i) / , /d a d b  and (ii) if / , /c a c b  then /c d . 
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Relatively Prime Integers: 

Two positive integers a and b are said to be relatively prime if gcd( , ) 1a b  . 

An interesting and useful property of gcd is that if gcd( , )a b d  then gcd , 1
a b

d d

 
 

 
. 

Euclid proved that if gcd( , ) 1a b   and if /a bc , then /a c . 

1.1.3 The Least Common Multiple:  

If /a c  and /b c  then we say that c is a common multiple of a and b. The least common 

multiple (lcm) of two positive integers a and b is the smallest positive integer which is divisible 

by both a and b; it is denoted by [ , ]lcm a b . 

Symbolically, a positive integer m is the lcm of two positive integers a and b if (i) 

/ , /a m b m  and (ii) if / , /a n b n  then /m n . 

We note that ( , ) [ , ]gcd a b lcm a b a b    always holds. 

1.1.4 Congruencies:  

Let m be a fixed positive integer. An integer a is congruent to an integer b modulo m if

/ ( )m a b . In symbols we write (mod )a b m . 

Here m is said to be modulus of the congruence relation. If a is not congruent to b 

modulo m then we write a ≢ b(mod m). 

Throughout we assume that all moduli (plural of modulus) are positive integers. 

The following properties of congruence always hold: 

(1) (mod )a b m  if and only if a b mk   for some integer k. 

(2) (mod )a a m . [Reflexive property] 

(3) If (mod )a b m  then (mod )b a m . [Symmetric property] 

(4) If (mod )a b m  and (mod )b c m  then (mod )a c m . [Transitive property] 

(5) If (mod )a b m  then a and b leave the same remainder when divided by m.  

(6) If (mod )a r m  where 0 r m   then r is the remainder when a is divided by m 

and conversely.  

By this result it is clear that every integer a is congruent to its remainder r modulo m. Here r is 

said to be least residue (or residue) of (mod )a m . Since r has exactly m choices 0, 1, 2, 3….  1m   

we have the following: 
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(i) Every integer is congruent (mod m) to exactly one of the least residues 

0, 1, 2, 3…  1m  . 

(ii) If (mod )a b m  and (mod )c d m , then (mod )a c b d m    and 

(mod )ac bd m . 

With suitable precautions, cancellation can also be allowed, as seen from the following 

useful result: 

(i) If (mod )ca cb m  then (mod )a b m d , where gcd(c, )d m . 

Congruence of two integers with different moduli can be combined in to a single 

congruence as the next result shows. 

(ii) If 1(mod )a b m , 2(mod )a b m ,…, (mod )ra b m then 1( [ , ])2 3 ra b mod m m ,m ,...,m ; where 

1[ , ]2 3 rm m ,m ,...,m is the lcm of 1, 2 3 rm m ,m ,...,m . If they are pair wise relatively prime then this 

congruence becomes 1( )2 3 ra b mod m m m ...m . 

1.1.5 Complete System of Residues:  

Any set of m integers
1 2 3
, , ,...,

m
a a a a is said to form Complete Residue System (CRS) 

modulo m if every integer is congruent  mod m to exactly one
r

a . In other words, if

1 2 3, , ,..., ma a a a  are congruent modulo m to 0, 1, 2, 3…  1m  in some order, then we say that

1 2 3
, , ,...,

m
a a a a constitute CRS  mod m . 

1.1.6 The Fundamental Theorem of Arithmetic: 

Prime numbers are the building blocks of all the integers. Every integer can be 

decomposed into primes. Before we state this cornerstone result of Theory of Numbers, we need 

to state the following results: 

(i) (Euclid): If p is a prime and /p ab , then /p a  or /p b . 

(ii) If p is a prime and 1 2/ ... np a a a , then / ip a
 
for some i, where 1 i n  . 

We can now state the most fundamental result in Number Theory. 

Theorem (The Fundamental Theorem of Arithmetic): 

Every positive integer 2n   is either a prime or can be expressed as a product of primes. 

The factorization into primes is unique except for the order of the factors. 
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A factorization of a composite number n in terms of primes is a prime factorization of n. 

Using the exponential notation, this product can be rewritten in a compact way as 

1 2

1 2 ... r

rn p p p   ; where 1 2, ,..., rp p p  are distinct primes with 1 2 ... rp p p    and each 
i  is a 

positive integer. This is said to be prime power representation of n. We can represent this 

product as i

in p  . 

We also note that if /p ab  and  gcd , 1p a 
 
then /p b . 

1.1.7 The Greatest Integer Function:  

For an arbitrary real number x, we denote by  x
 
the largest integer less than or equal to 

x; i.e. x  is the unique integer satisfying  1x x x   . 

Sometimes  x  is also denoted by x   . This function is also known as Floor function. 

1.1.8 A Generating Function: 

The ordinary generating function  f x for the infinite sequence  0 1 2, , ,...a a a is a power 

series  
0

n
n

n

f x a x




 . Normally the term generating function is used to mean ordinary 

generating function. 

Here we usually regard x as a place holder rather than a number. Only in a rare cases x is 

regarded as a real number. Thus while actually evaluating a generating function, we can largely 

forget about questions of convergence. 

1.1.9 Fermat’s Theorem: 

The following theorem also known as Fermat’s “Little” theorem is an important result in 

the Theory of Numbers. 

Theorem: If p is a prime and  gcd , 1p a   then  1 1 modpa p  . 

1.2 Introduction to Fibonacci Numbers: 

Fibonacci was born in Pisa-Italy around 1170. Around 1192 his father, Guillielmo 

Bonacci, became director of the Pisan trading colony in Bugia-Algeria, and some time thereafter 

they traveled together to Bugia. From there Fibonacci traveled throughout Egypt, Syria, Greece, 
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Sicily and Provence where he became familiar with Hindu-Arabic numerals which at that time 

had not been introduced into Europe. 

He returned to Pisa around 1200 and produced Liber Abaci in 1202. In it he presented 

some of the arithmetic and algebra he encountered in his travels, and he introduced the place-

valued decimal system and Arabic numerals. Fibonacci continued to write mathematical works at 

least through 1228, and he gained a reputation as a great mathematician. Not much is known of 

his life after 1228, but it is commonly held that he died sometime after 1240, presumably in Italy. 

Despite his many contributions to mathematics, Fibonacci is today remembered for the 

sequence which comes from a problem he poses in Liber Abaci. The following is a paraphrase: 

A man puts one pair of rabbits in a certain place entirely surrounded by a wall. The nature 

of these rabbits is such that every month each pair bears a new pair which from the end of their 

second month on becomes productive. How many pairs of rabbits will there be at the end of one 

year? 

If we assume that the first pair is not productive until the end of the second month, then 

clearly for the first two months there will be only one pair. At the start of the third month, the 

first pair will produce a pair giving us a total of two pair. During the fourth month the original 

pair will produce a pair again but the second pair does not, giving us three pair and so on. 

Assuming none of the rabbits die, we can develop a recurrence relation. Let there be nF

pairs of rabbits in month n , and 1nF  pairs of rabbits in month 1n . During month 2n , all the 

pairs of rabbits from month 1n  will still be there, and of  those rabbits the ones which existed 

during the nth month will give birth. 

Hence 2 1n n nF F F   . 

The sequence which results when 1 2 1F F  is called the Fibonacci sequence and the 

numbers in the sequence are the Fibonacci numbers: 

1 2 3 4 5 6 7 8 9

1 1 2 3 5 8 13 21 34n

n

F




 

Thus the answer to Fibonacci problem is 144. 

Interestingly, it was not until 1634 that this recurrence relation was written down by 

Albert Girard. 
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Despite its simple appearance the Fibonacci sequence  nF  contains a wealth of subtle 

and fascinating properties which are listed below: 

1. 1gcd( , ) 1, 0,1, 2,3,....n nF F n    .   

2. 1 2 3 2 1n nF F F F F       . 

3. 1 1m n m n m nF F F F F    . 

4. 1( 1) , 1n
n nF F n

    . 

5. 1 1( 1) ( )n
m n m n m nF F F F F      

6. m mnF F ; for all integers m and n. 

7. 2
1 1 ( 1)n

n n nF F F     . 

 



Chapter- 2 

 

 

Left k-Fibonacci sequence and  

related identities 
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2.1 Introduction: 

Number Theory is one of the branches of Mathematics related to numbers. The 

elementary properties are discuss in [6, 35] which we used through my research work. Fibonacci 

sequence  nF  is defined as 0 10, 1F F  and 1 2 ,n n nF F F   for 2n  , which gives the 

sequence 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144 …. The Fibonacci numbers also occur in 

Pascal‘s triangle [7, 24]. This sequence arise naturally in many unexpected places and used in 

equally surprising places like computer algorithms [5, 18, 19], some areas of algebra [2, 10], 

quasi crystals [42] and many areas of mathematics. They occur in a variety of other fields such as 

finance, art, architecture, music, etc. [2, 13] for extensive resources on Fibonacci numbers) The 

Fibonacci sequence is a source of many identities as appears in the work of Vajda [43]. Recently, 

new generalization of Fibonacci sequences has seized the attention of the mathematicians in [20, 

29, 30, 31]. The definition of Fibonacci numbers can be extended to define any term as the sum 

of the preceding three terms i.e. Tribonacci numbers in [36, 37].  

There are fundamentally two ways in which the Fibonacci sequence may be generalized; 

namely, either by maintaining the recurrence relation but altering the first two terms of the 

sequence from 0, 1 to arbitrary integers a, b [29, 38] or by preserving the first two terms of the 

sequence but altering the recurrence relation. The two techniques can be combined, but a change 

in the recurrence relation seems to lead to greater complexity in the properties of the resulting 

sequence.  

We define a generalization of the Fibonacci sequence and call it the generalized Fibonacci 

sequence. The terms of this sequence are defined by the recurrence relation 

1 2( , ) ( , ) ( , ); 2n n nF a b aF a b bF a b n    ,                          (2.1.1) 

with initial condition 0 ( , ) 0F a b   and 1( , ) 1F a b  , where a  and b  are any fixed integers.  

The first few terms of this sequence are shown in the following table: 

  n          ( , )nF a b  

  0      0 

  1      1 

  2            a   

  3              2a b  
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  4         3 2a ab  

  5       4 2 23a a b b   

We note that clearly   (1,1)n nF F , the sequence of usual Fibonacci numbers. 

2.2 The sequence  ( ,1)nF k , an introduction: 

One of the purpose of this chapter is to study the subsequence  ( ,1)nF k of  ( , )nF a b by 

considering a k and 1b    in (2.1.1). We call the sequence  ( ,1)nF k as the left k- Fibonacci 

sequence which uses one real parameter k. We write it as ,( ,1) L
n k nF k F . 

Definition: For any real number k, sequence  ,
L

k nF , the sequence of left k- Fibonacci numbers 

is generated by the recurrence relation 

, , 1 , 2 , 2L L L
k n k n k nF kF F n          (2.2.1) 

where ,0 0L
kF    and ,1 1L

kF  . 

In [8, 11, 27, 44], a new generalization of family of Fibonacci sequences and each new 

choice of  a  and b  produces a distinct sequence. In [3, 4, 14, 15, 16, 17], the k-Fibonacci 

numbers introduced and give simple proof of an interesting Fibonacci generalization. 

Some of the terms of this sequence are shown in the following table: 

n            ,
L

k nF  

0      0 

1      1 

2           k  

3            2 1k   

4          3 2k k  

5      4 23 1k k   

6                5 34 3k k k   

7             6 4 25 6 1k k k    

8           7 5 36 10 4k k k k    
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9       8 6 4 27 15 10 1k k k k     

10     9 7 5 38 21 20 5k k k k k     

11           10 8 6 4 29 28 35 15 1k k k k k      

12         11 9 7 5 310 36 56 35 6k k k k k k      

13    12 10 8 6 4 211 45 84 70 21 1k k k k k k       

14   13 11 9 7 5 312 55 120 126 56 7k k k k k k k       

15        14 12 10 8 6 4 213 66 165 210 126 28 1k k k k k k k        

16                       15 13 11 9 7 5 314 78 220 330 252 84 8k k k k k k k k        

Appendix- I is computer program to obtain terms of left k- Fibonacci sequence nF using 

the programming language MATLAB (R2008a). 

 If 1k  , we get classic Fibonacci sequence defined by 0 10, 1F F    and 

1 2 , 2n n nF F F n    . This gives the sequence 

   0,1,1, 2,3,5,8,13, 21,nF   . 

 If 2k  , we obtain classic Pell’s sequence  defined by 0 10, 1P P   and 

1 22 , 2n n nP P P n    , Here we have   0,1, 2,5,12, 29,70,nP   . 

 If 3k  ,we get following sequence  defined 0 10, 1H H  and 

1 23 , 2n n nH H H n    . This gives the sequence 

   0,1,3,10,33,109,nH   . 

Numerous results are available in the literature for the sequence  nF of Fibonacci 

numbers in [24]. The simple appearance of the sequence  ,
L

k nF  contains a wealth of subtle and 

fascinating properties. In this chapter we explore several of the fundamental identities related 

with sequence  ,
L

k nF . 
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2.3 Some basic identities of left k- Fibonacci numbers: 

One of the purposes of this chapter is to develop many of the identities needed in the 

subsequent chapters. We use the technique of induction as a useful tool in proving many of these 

identities and theorems involving Fibonacci numbers. 

Lemma 2.3.1 , , 1( , ) 1, 0,1, 2,3,....L L
k n k ngcd F F n    .     

Proof: Suppose that ,
L

k nF and , 1
L

k nF   are both divisible by a positive integer d .  

Then clearly , 1 , , , 1 , , , 1( 1)L L L L L L L
k n k n k n k n k n k n k nF F kF F F k F F         will also be divisible by d. 

 

Then right hand side of this result is divisible by d. This gives , 1
L

k nd F  . 

Continuing this argument we see that , 2 , 3,L L
k n k nd F d F    and so on. Eventually, we must 

have ,1
L

kd F . Since ,1 1L
kF  , we get 1d  .  

This proves the required result. 

In [32, 46] Zeitlin obtain summation formulas and identities for Fibonacci numbers. We 

denote the sum of first n left k- Fibonacci numbers by nS and prove some identities related with 

the summation of left k-Fibonacci numbers. 

Lemma 2.3.2 ,i , 1 ,
1

1
( 1)

n
L L L

n k k n k n
i

S F F F
k




    . 

Proof: We have , , 1 , 2 , 2L L L
k n k n k nF kF F n    . Replacing n by 2, 3, 4, … we get 

   ,2 ,1 ,0
L L L

k k kF kF F   

   ,3 ,2 ,1
L L L

k k kF kF F   

   ,4 ,3 ,2
L L L

k k kF kF F   

      

   , 2 , 3 , 4
L L L

k n k n k nF kF F     

   , 1 , 2 , 3
L L L

k n k n k nF kF F     

   , , 1 , 2
L L L

k n k n k nF kF F    

Now adding all these equations term by term, we get 

,2 ,3 , ,0 ,1 ,2 ,n 2 ,n 1( 1)(F F F ) kFL L L L L L L L
k k k n k k k k kF F F F k              
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,1 ,2 ,3 , ,0 ,1 ,1 ,2 , 2 ,n 1 ,

, 1 , 1 ,n

( 1)(F F F F )

kF (k 1)(F F )

L L L L L L L L L L L
k k k k n k k k k k n k k n

L L L
k n k n k

F F F F F F k F 

 

             

   

 
 

,1 ,2 ,3 , ,0 ,1 , 1 , ,(1 k 1)( )L L L L L L L L L
k k k k n k k k n k n k nF F F F F F F kF F             

,1 ,2 ,3 , ,n ,n 1 , ,1( )L L L L L L L L
k k k k n k k k n kk F F F F kF F F F          

,1 ,2 ,3 , , 1 ,

1
( 1)L L L L L L

k k k k n k n k nF F F F F F
k

        . 

An alternate method of proving lemma 2.3.2 is to apply the principle of mathematical 

induction. Using the same process or by induction we can derive formulae for the sum of the first 

n left k-Fibonacci numbers with various subscripts. 

We next find the sum of first n left k-Fibonacci numbers with only odd or even 

subscripts. 

Lemma 2.3.3 ,2 1 ,2
1

1n
L L

k i k n
i

F F
k




 .      

Proof: We have , , 1 , 2 , 2L L L
k n k n k nF kF F n    . Replacing n by 2, 4, 6...., we get 

,2 ,1 ,0
L L L

k k kF kF F   

  ,4 ,3 ,2
L L L

k k kF kF F   

  ,6 ,5 ,4
L L L

k k kF kF F   

     

  ,2 2 ,2 3 ,2 4
L L L

k n k n k nF kF F      

  ,2 ,2 1 ,2 2
L L L

k n k n k nF kF F  
 .
 

Adding all these equations term by term we get  

,2 ,4 ,6 ,2
L L L L

k k k k nF F F F     

,1 ,3 ,2 1 ,0 ,2 ,4 ,2 2( ) ( )L L L L L L L
k k k n k k k k nk F F F F F F F            

,1 ,3 ,2 1 ,2 ,4 ,2 2 ,2 ,2( ) ( )L L L L L L L L
k k k n k k k n k n k nk F F F F F F F F              

,1 ,3 ,2 1 ,20 ( )L L L L
k k k n k nk F F F F        

,1 ,3 ,5 ,2 1 ,2

1L L L L L
k k k k n k nF F F F F

k
      . This proves the lemma. 
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Lemma 2.3.4 ,2 ,2 1
1

1
( 1)

n
L L

k n k n
i

F F
k




  .     

Proof: We have ,n ,n 1 ,n 2 , 2L L L
k k kF kF F n    . Replacing n by 1, 3, 5… we get 

,1 1L
kF   

,3 ,2 ,1
L L L

k k kF kF F   

,5 ,4 ,3
L L L

k k kF kF F   

  

,2 1 ,2 2 ,2 3
L L L

k n k n k nF kF F     

Adding all these equations term by term, we get 

,1 ,3 ,5 ,2 1
L L L L

k k k k nF F F F      

,2 ,4 ,2 2 ,1 ,3 ,5 ,2 31 ( ) ( )L L L L L L L
k k k n k k k k nk F F F F F F F             

,2 ,4 ,2 2 ,2 ,2

,1 ,3 ,5 ,2 1 ,2 1

1 ( F ) kF

( )

L L L L L
k k k n k n k n

L L L L L
k k k k n k n

k F F F

F F F F F



 

      

     




 

,2 ,4 ,2 ,2 ,2 10 1 ( F ) (kF ).L L L L L
k k k n k n k nk F F F          

,2 ,4 ,6 ,2 ,2 1

1
( 1)L L L L L

k k k k n k nF F F F F
k

       . 

The following results follow immediately from above lemmas. 

Corollary 2.3.5  ,2 0L
k nF mod k and  ,2 1 1L

k nF mod k  . 

2.4 Some more identities for left k-Fibonacci numbers: 

We now derive some more interesting identities for ,
L

k nF . First we prove the reduction 

formula for ,
L

k nF . 

Lemma 2.4.1 ,m n ,m 1 , ,m , 1
L L L L L

k k k n k k nF F F F F    . 

Proof: Let mbe the fixed positive integer. We proceed by inducting on n . 

For 1n  , we have ,m 1 ,m 1 ,1 ,m ,2
L L L L L

k k k k kF F F F F   . 

Since ,0 0L
kF  , ,1 1L

kF   and ,2
L

kF k , we have , 1 , , 1
L L L

k m k m k mF kF F   , which is true. This proves 

the result for 1n  . 
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Now let us assume that the result is true for all integers up to some positive integer ‘t’. Then both 

,m ,m 1 ,t ,m ,t 1
L L L L L

k t k k k kF F F F F      

and ,m (t 1) ,m 1 ,t 1 ,m ,t
L L L L L

k k k k kF F F F F    
 
holds.  

Now, from these two results we have

,m ,m (t 1) ,m 1 ,t ,m ,t 1 ,m 1 ,t 1 ,m ,t( ) ( )L L L L L L L L L L
k t k k k k k k k k kkF F k F F F F F F F F           . Thus 

,m 1
L

k tF   , 1 , , 1 ,m , 1 ,( ) (k )L L L L L L
k m k t k t k k t k tF kF F F F F       

,m 1 , 1 ,m , 2
L L L L

k k t k k tF F F F     

,m 1 , 1 ,m ,( 1) 1 ,m ( 1)
L L L L L

k k t k k t k tF F F F F        ,  

This is obviously true. 

Thus by the mathematical induction, the result is true for all positive integers n . 

Example: If 2, 3m n   then 4 2
,2 3 ,5 3 1L L

k kLHS F F k k     and 

2 3 4 2
,1 ,3 ,2 ,4 (1)(k 1) k(k 2k) k 3k 1L L L L

k k k kRHS F F F F         . 

It is often useful to extend the sequence of left k-Fibonacci numbers backward with 

negative subscripts. In fact if we try to extend the left k-Fibonacci sequence backwards still 

keeping to the same rule, we get the following:  

  n     ,n
L

kF    

  -1    1 

  -2                                           k  

  -3           2 1k   

  -4      3(k 2k)   

  -5      4 23 1k k   

  -6             5 3(k 4k 3k)    

  -7           6 4 25 6 1k k k    

Thus the sequence of left k-Fibonacci numbers is a bilateral sequence, since it can be 

extended infinitely in both directions. From this table and from the table of values of ,
L

k nF , the 

following result follows immediately.  

Lemma 2.4.2 1
, n ,n( 1) , 1L n L

k kF F n
    . 
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Note: This result will prove later on by Binet’s Formula.  

 We now obtain the extended d’Ocagne’s Identity for this sequence. 

Lemma 2.4.3 ,m n ,m ,n 1 ,m 1 ,n( 1) ( )L n L L L L
k k k k kF F F F F     .     

Proof: Replacing n by n   in Lemma 2.4.1, we get ,m n ,m 1 , n ,m , n 1
L L L L L

k k k k kF F F F F      . 

Using the definition of left k-Fibonacci sequence and Lemma 2.4.2, we get 

 1
,m n ,m 1 ,n ,m ,n 1( 1) ( 1)L L n L L n L

k k k k kF F F F F
       

   ,m ,n 1 ,n ,n ,m 1 ,m( 1) [ ( ) ( )n L L L L L L
k k k k k kF F kF F F kF       

   ,m ,n 1 ,m 1 ,n( 1) ( )n L L L L
k k k kF F F F    . 

We next prove the divisibility property for ,n
L

kF . 

Lemma 2.4.4 , ,
L L

k m k mnF F ;  for any non-zero integers m  and n .    

Proof:  Let m  be any fixed positive integer. We proceed by inducting on n . 

For 1n  , we have , ,
L L

k m k mF F , which is obvious. This proves the result for 1n  . 

Now suppose the result is true for all integers n up to some integer  ‘t’.  

i.e. we assume that , ,
L L

k m k mtF F .  

Then , ( 1) ,
L L

k m t k mt mF F  , 1 , , , 1
L L L L

k mt k m k mt k mF F F F   . But by assumption, we have , ,
L L

k m k mtF F . 

Thus ,
L

k mF
 
divides the entire right side of the above equation. 

Hence , , (t 1)
L L

k m k mF F  ,  which proves the result for all positive integers n .  

Note: By Lemma 2.4.2 it is obvious that the above divisibility criterion holds for negative 

values of  n also.  

 We now find an expression for the sum of squares of first n left k-Fibonacci numbers. 

Lemma 2.4.5 2
,i , , 1

1

1n
L L L

k k n k n
i

F F F
k




 . 

Proof: We observe that   2
,m ,m ,m ,m , 1 , 1

1L L L L L L
k k k k k m k mF F F F F F

k
 

 
   

 
 

     , , 1 , , 1

1 L L L L
k m k m k m k mF F F F

k
   . 

Replacing m by 1, 2, 3 … we get   
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2
,1 ,1 ,2

1
(F F )L L L

k k kF
k
  

   
2

,2 ,2 ,3 ,1 ,2

1
(F F F F )L L L L L

k k k k kF
k
   

   
2

,3 ,3 ,4 ,2 ,3

1
(F F F F )L L L L L

k k k k kF
k
   

      

  
2

,n 1 ,n 1 ,n ,n 2 ,n 1

1
(F F F F )L L L L L

k k k k kF
k

      

   
2

,n ,n ,n 1 ,n 1 ,n

1
(F F F F )L L L L L

k k k k kF
k

   . 

Adding all these equations, we get the required result 2
,i , , 1

1

1n
L L L

k k n k n
i

F F F
k




 .  

Example: If 3n  then 2 3 4 2
,3 ,4

1 1
( 1)( 2 ) k 3k 2L L

k kRHS F F k k k
k k
        and

3
2 2 2 2 2 2 2 4 2

,i ,1 ,2 ,3
1

1 ( 1) 3 2L L L L
k k k k

i

LHS F F F F k k k k


           . 

From this Lemma, the following result follows immediately. 

Corollary 2.4.6 The product of two consecutive left k- Fibonacci numbers is given by

2
, , 1 ,

1

n
L L L

k n k n k i
i

F F k F


  . 

We next find the value of sum of squares of any two consecutive left k-Fibonacci 

numbers. 

Lemma 2.4.7 2 2
,n , 1 ,2n 1FL L L

k k n kF F    .       

Proof: We prove this result by the principal of mathematical induction. 

For 1n  , we have 2 2
,1 ,2 ,3FL L L

k k kF F  and 2
,3F 1L

k k  . This proves the result for 1n  . 

We assume that result is true for all positive integers up to some positive integer  ‘t’.  

Thus 2 2
, , 1 ,2 1FL L L

k t k t k tF F    holds by assumption.  

Now 2 2 2 2
, 1 , 2 , 1 , 1 ,F ( F F )L L L L L

k t k t k t k t k tF F k      
 

   
2 2 2 2

, 1 , 1 , , 1 ,F 2 F FL L L L L
k t k t k t k t k tF k k F       
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   2 2
, 1 , , 1 , , 1 ,2 1F F F F FL L L L L L

k t k t k t k t k t k tk F k k         

   , 1 , 1 , , , 1 ,2 1( F )L L L L L L
k t k t k t k t k t k tkF k F kF F F        

   , 1 , 2 , 1 , ,2 1F FL L L L L
k t k t k t k t k tkF kF F     

 

, 1 , 2 , 1 , ,2 1( F ) FL L L L L
k t k t k t k t k tk F F F     

 

, 1 , , 1 , 2 ,2 1( F ) FL L L L L
k t k t k t k t k tk F F F       

,2 2 ,2 1 ,2 3 ,2( 1) 1
L L L L

k t k t k t k tkF F F F        . 

This proves the result by induction. 

Example: If 3n   then 2 2 2 2 3 2
,3 ,4 ( 1) ( 2 )L L

k kLHS F F k k k       

     
6 4 2

,75 6 1 L
kk k k F RHS      . 

We next derive a result which connects three consecutive left k- Fibonacci numbers with 

odd subscript. 

Lemma 2.4.8 2
,2 5 ,2 3 ,2 1( 2) 0L L L

k n k n k nF k F F      . 

Proof: By definition, ,2 5 ,2 4 ,2 3 ,2 3 ,2 2 ,2 3( )L L L L L L
k n k n k n k n k n k nF kF F k kF F F           

  2
,2 3 ,2 2( 1) .L L

k n k nk F kF     

Now 2
,2 5 ,2 3 ,2 1( 2)L L L

k n k n k nF k F F      

  2 2
,2 3 ,2 2 ,2 3 ,2 1( 1) ( 2)L L L L

k n k n k n k nk F kF k F F          

  2 2
,2 3 ,2 3 ,2 3( 1) ( 2) 0L L L

k n k n k nk F k F F         

We finally prove the analogous of one of the oldest identities involving the Fibonacci 

numbers - Cassini’s identity, which was discovered in 1680 by a French astronomer Jean – 

Dominique Cassini. (Koshy [24]) 

Lemma 2.4.9 2
,n 1 ,n 1 ,n ( 1)L L L n

k k kF F F     .       

Proof : We have 2 2
,n 1 ,n 1 ,n ,n ,n 1 ,n 1 ,n( )L L L L L L L

k k k k k k kF F F kF F F F        

    2 2
, , 1 , , 1
L L L L

k n k n k n k nkF F F F     

    2
,n ,n 1 ,n ,n 1( )L L L L

k k k kF kF F F     

    2
,n ,n 2 ,n 1
L L L

k k kF F F     2
,n ,n 2 ,n 1( 1)( )L L L

k k kF F F    .  
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Repeating the same process successively for right side, we get  

2 1 2
,n 1 ,n 1 ,n ,n ,n 2 ,n 1( 1) ( )L L L L L L

k k k k k kF F F F F F       
 

2 2
,n 1 ,n 3 ,n 2( 1) ( )L L L

k k kF F F      

   3 2
,n 2 ,n 4 ,n 3( 1) ( )L L L

k k kF F F      

       

   2
,1 , 1 ,0( 1) ( )n L L L

k k kF F F    

   ( 1)n  . 

In [25, 28, 34, 44] matrices were used to discover facts about the Fibonacci sequence. We 

now demonstrate a close link between matrices and left k- Fibonacci numbers. We define an 

important 2 2 matrix 
0 1

1
U

k

 
  
 

, which plays a significant role in discussions concerning  left 

k- Fibonacci sequence. 

We prove the following results, which will be used later in the chapter. 

Lemma 2.4.10 (1) 2U kU I    (2) 2 1U I kU   . 

Proof : (1) We have 2

2

0 1 0 1 1

1 1 1

k
U

k k k k

     
            

 

   
0 1 1 0

1 0 1
k

k

   
    
   

 

   kU I   

(2) 2

2

1

1

k
U

k k

 
   

1 2
2

2

1 1

1 1

k k k
U

k k k



    
         

 

and 

1

1 0 1 1

1 1 0

k
U

k



    
        

 

2
1 21 0 1 1

0 1 1 0 1

k k k
I kU k U

k

       
               

. 

This proves the required results. 
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Lemma 2.4.11 If 
0 1

1
U

k

 
  
 

 then , 1 ,

, , 1

L L
k n k nn

L L
k n k n

F F
U

F F




 
  
 

.  

Proof: We prove this result by using principal mathematical induction. 

For 1n  , we have  ,0 ,1

,1 ,2

0 1

1

L L
k k

L L
k k

F F
U

F F k

   
    

  
 

This proves the result for 1n  . 

Assume that the result is true for some positive integer n t . 

Thus ,t 1 ,t

,t ,t 1

L L
k kt

L L
k k

F F
U

F F




 
  
   

holds by assumption.         

 Now ,t 1 ,t ,t ,t , 11

,t ,t 1 ,t 1 , 1 ,t

0 1

1

L L L L L
k k k k k tt t

L L L L L
k k k k t k

F F F kF F
U U U

F F k F kF F
 

  

    
           

,t ,t 1

,t 1 ,t 2

L L
k k

L L
k k

F F

F F


 

 
  
 

 

Thus the result is true for 1n t   also. This proves the result by induction. 

We can apply above Lemma to derive four new identities as the next corollary shows, 

although they are basically the same. 

Corollary 2.4.12 , 1 , ,n , 1 ,n 1
L L L L L

k m n k m k k m kF F F F F      

 , , ,n 1 , 1 ,n
L L L L L

k m n k m k k m kF F F F F     

, , 1 ,n , ,n 1
L L L L L

k m n k m k k m kF F F F F     

, 1 , 1 ,n 1 , ,n
L L L L L

k m n k m k k m kF F F F F      

Proof:  We know that m n m nU U U    

 , 1 , ,n 1 ,n , 1 ,

, , 1 ,n ,n 1 , , 1

L L L L L L
k m k m k k k m n k m n

L L L L L L
k m k m k k k m n k m n

F F F F F F

F F F F F F
    

    

     
       
     

 

 , 1 ,n 1 , ,n , 1 ,n , ,n 1 , 1 ,

, ,n 1 , 1 ,n , ,n , 1 ,n 1 , , 1

L L L L L L L L L L
k m k k m k k m k k m k k m n k m n

L L L L L L L L L L
k m k k m k k m k k m k k m n k m n

F F F F F F F F F F

F F F F F F F F F F
      

      

    
    

    
 

Now comparing the corresponding entries, we have above results. 

Remark: Lemma 2.4.9 can be proved by using matrix. 

We have
0 1

1
U

k

 
  
 

. Then  1U   . Also , 1 ,

, , 1

L L
k n k nn

L L
k n k n

F F
U

F F




 
  
 

. 
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Then 2
, 1 , 1 ,

n L L L
k n k n k nU F F F  

  
2

, 1 , 1 ,
n L L L

k n k n k nU F F F 
      

  2
, 1 , 1 ,1

n L L L
k n k n k nF F F 
       

 2
, 1 , 1 , 1

nL L L
k n k n k nF F F     . 

First, we will describe the terms of the left k-Fibonacci sequence ,
L

k nF explicitly by using a 

generalization of Binet’s formula. Therefore, we will start the main content of the second part by 

deriving a generalization of Binet’s formula (via generating functions). 

2.5 Generating function for ,
L

k nF : 

 Generating function provide a powerful technique for solving linear homogenous 

recurrence relation. Normally generating functions are used in combination with linear 

recurrence relations with constant coefficients. Here we consider the generating functions for the 

generalized Fibonacci sequence and derive some of the most fascinating identities satisfied by 

this sequence. 

Lemma 2.5.1 The generating function for the generalized left k-Fibonacci sequence  , 0

L
k n n

F



 

is given by
2

( )
1

x
f x

kx x

 

. 

Proof: We begin with the formal power series representation of generating function for ,
L

k nF .  

Define 2
, 0 1 2

0 0

( ) L m m
k m m

m m

f x F x g x g g x g x
 

 

         

2 3 4
1 0 2 1 3 20 (1) ( ) ( ) ( )x kg g x kg g x kg g x          

2 2 2
0 1 2 1 2( ) ( )x g g x g x x kx g x g x          

2 ( ) ( )x x f x kxf x    

2

2
(1 ) ( ) ( )

1

x
kx x f x x f x

kx x
     

 
. 

This is generating function of  , 0

L
k n n

F



.      

2.6 Extended Binet’s formula ,
L

k nF : 
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While the recurrence relation and initial values determine every term in the Fibonacci 

sequence, there is an explicit formula for ,
L

k nF which helps to compute any Fibonacci number 

without using the preceding Fibonacci numbers. 

In the 19th century, the French mathematician Jacques  Binet derived two remarkable 

analytical formulas for the Fibonacci and Lucas numbers. In our case, Binet’ formula allows us 

to express the left k- Fibonacci numbers in the function of the roots  and  of the characteristic 

equation 2 1 0x kx   , associated to the recurrence relation , , 1 , 2 , ( 2)L L L
k n k n k nF F kF n    . 

In [8, 17, 26, 40], Binet’s Formula was used to obtain some new identities for k- 

Fibonacci numbers. Here we will describe the terms of the left k Fibonacci sequence  , 0

L
k n n

F




explicitly by using a generalization of Binet’s formula and then will present extensions of well-

known Fibonacci identities such as Cassini’s, Catalan’s, and d’Ocagne. 

Since, we have second order difference equation with constant coefficients. Therefore, it 

has the characteristic equation 2 1x kx  . The roots of this equation are 
2 4

2

k k


 
 and 

2 4

2

k k


 
  . We note that , 1k      and 2 4k     . 

Theorem 2.6.1 The nth left k- Fibonacci number ,
L

k nF is given by ,

n n
L

k nF
 

 





;  

where ,  are roots of characteristic equation 2 1x kx  .  

Proof: Using partial fraction decomposition, we rewrite ( )f x  as 

 ( )
(1 )(1 ) 1 1

x A B
f x

x x x x   
  
   

 

Solving this equation for A and B, we get
1 1

,A B
   


 
 

 

1 11 1 1 1
( ) (1 ) (1 )

1 1
f x x x

x x
 

     
  

             
 

2 2 2 21
[(1 ) (1 )]x x x x   
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0 0 0

1
( )

n n
n n n n n

n
n n n

x x g x
 

 
   

  

  


   
 
    

Since we have 

nn

ng
 

 





, we have ,

n n
L

k nF
 

 





. 

This is an extended Binet’s Formula for  , 0

L
k n n

F



. 

Remark: We can prove the Lemma- 2.4.2 by using Binet’s formula. We have ,

n n
L

k nF
 

 





. 

Substituting n  in place of n , we get 
 
 ,

n nn n
L

k n n n
F

  

     

 



 
 

 
. 

Hence 1
, n ,n( 1) , 1L n L

k kF F n
    , as required. 

Catalan’s Identity for Fibonacci numbers was found in 1879 by Eugene Charles Catalan a 

Belgian mathematician who worked for the Belgian Academy of Science in the field of Number 

Theory.  Here we obtain analogues result. 

Lemma 2.6.2 2 1 2
, , , ,( 1)L L L n r L

k n r k n r k n k rF F F F 
     . 

Proof: By using theorem 2.6.1 and 1   on LHS of result, we get

 

2
n r n r n r n r n n

LHS
     

     

       
  

   
 

  
   

 

2 2

2

2n r n r n r n r n n n n       

 

       



 

  
 

     2 2

2

1
2

n r n r nr r    
 

     
 

 

  
 

     2 2

2

1
1 1 2 1

n r n r nr r 
 

        
 

 

  
 

 
 

1

12 2

2

1
2 1

n r

rr r 
 

 


    
 

 

  
 

 
 

1

2 2

2

1
2 1

n r

rr r 
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1

2 2

2

1
2

n r

rr r  
 

 


   
 

 

   
 

 

2

1 1 2
,1 1

r r
n r n r L

k rF
 

 

   
   


. 

This completes the proof. 

The following is analogues to one of the oldest identities involving the Fibonacci 

numbers, which was discovered in 1680 by Jean-Dominique Cassini, a French Astronomer. 

Lemma 2.6.3 2
, 1 , 1 , ( 1)L L L n

k n k n k nF F F     . 

Proof: Taking 1r  in Catalan’s Identity gives Cassini’s Identity for the left k-Fibonacci numbers. 

Now we derive extended d’Ocagne’s Identity. 

Lemma 2.6.4  If m n , we have ,m , 1 ,m 1 , ,m n( 1)L L L L n L
k k n k k n kF F F F F     . 

Proof: By using theorem 2.6.1 and 1   on LHS of the required result we get 

 
1 1 1 1m m n n m m n n

LHS
       

       

      
 

   
 

 
 

      1 1 1 1

2

1 m m n n m m n n       
 

          
  

  
   1 1 1 1

2

1 m n n m m n n m         
 

        
 

            

 

 
1 2 2 1 1 1

2

n

m n m n m n m n
     

 

            


 

 

 

 
 

2

2 2 2

1
n m n m n m n m n   


     

     
    

    

 

 

 
2

1
n m n m n m n m n   

    

     
    

    

 

 

 
2

1 1 1 1 1
n

m n m n 
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   2

1
n m n m n 

   
  

   
    

    

 

    ,1 1
m n m n

n n L
k m nF

 

 

 



 
    

   

Lemma 2.6.5 The sum of first  1n  terms of the left k -Fibonacci sequence is given by 

 , , , 1 ,
0

1
1

n
L L L L

k i k n k n k n
i

F S F F
k




   
 

Proof: Using theorem 2.6.1, we write ,
L
k nS  as ,

0 0 0

1 1
( )

n n n
L i i i i
k n

i i i

S    
     

   
 
     

1 11 1 1

1 1

n n 

   

   
  
   

 

 
    

1 1 1 11 1

1 1

n n n n      

   

         


  
 

      

1 1

1 1

n n n n     

   

      


  
  

 

     
   

1 1n n n n

k

     

 

      


 
 

Hence  

1 1

, , 1 ,

1 1
1 1

n n n n
L L L
k n k n k nS F F

k k

   

   

 



  
             

We now prove a simple but important result which states that the limit of the quotient of 

two consecutive terms of  ,
L

k nF  is equal to the positive root of the corresponding characteristic 

equation. 

Lemma 2.6.6  
,

, 1

lim
L

k n

Lx
k n

F

F





 . 

Proof: Using Theorem 2.6.1 for ,n
L

kF  , and using the fact that 

lim 0,
n

x


 



 
  

 
, we get  
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,

1 1
, 1

1

lim lim lim
1 1

.

n

L n n
k n

nL n nx x x
k n

F

F


  


  

  

   


 
      

  
  
 

. 

Note: For classical Fibonacci sequence we have 
1

lim n

x
n

F

F





 , a golden proportion. 

We now prove a combinatorial identity which expresses ,n
L

kF  as an series with finite 

number of terms. 

Lemma 2.6.7  

1

2
1 2 2

, 1
0

1
4

2 12

n

i
L n i

k n n
i

n
F k k

i

 
 
 

 




 
  

 
 . 

Proof  By theorem 2.6.1, we have 

 
2 2

,

1 4 4

2 2

n n
n n

L
k n

k k k k
F

 

   

              
          

 

   2 2

2

1
4 4

2 4

n n

n
k k k k

k

 
       

 

 

 

2
1 2 2 2

2 2
1 2 2 2

4 4
1 21

2 4
4 4

1 2

n n n

n
n n n

n n
k k k k k

n nk
k k k k k

 

 

     
         
     

  
      
          

     





 

 
3

1 2 3 2

2

1
2 4 2 4

1 32 4

n n

n

n n
k k k k

k

 
    

        
     

  

   
2 4

1 3 2 5 2

1

1
4 4

1 3 52
n n n

n

n n n
k k k k k  



      
           

      
  

   
2

1 3 2 5 2

1

1
4 4

1 3 52
n n n

n

n n n
k k k k k  



      
           

      
  

 

1

2
1 2 2

, 1
0

1
4

2 12

n

iL n i
k n n

i

n
F k k

i

 
 
 

 




 
   

 
 . 

In [3, 4, 11, 44] many identities were derived related to  and  . We next express n

and n  in terms of two consecutive values of ,n
L

kF . 
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Lemma 2.6.8 , , 1
n L L

k n k nF F   
 
and , , 1

n L L
k n k nF F    . 

Proof: We prove this result by the principal of mathematical induction. 

For 1n  , we have ,1 ,0
L L

k kRHS F F LHS      

This proves the result for 1n  . 

We assume that result is true for all positive integers up to some positive integers  ‘t’. 

Thus ,t ,t 1
t L L

k kF F    holds by assumption. 

Now, 1 2
, , 1 , , 1( )t t L t t t

k t k t k t k tF F F F     
       

,2 ,1 , , 1 , , 1( ) F ( 1) Ft t t t t t
k k k t k t k t k tF F F k F           

, , 1 , , 1 ,( )L L L L L
k t k t k t k t k tkF F F F F      

 
1

, 1 ,
t L L

k t k tF F 
   . 

 This proves the result is true for 1n t   also. 

Hence the result is true for all positive integers n.  Second result can be proved on the 

same line. 

We now define ;n n
n nP Q   . We first derive the recurrence relation for both nP  and nQ . 

Lemma 2.6.9 1 2; 2n n nP kP P n    .  

Proof: We prove this result by the principle of mathematical induction. For 2n   , we have 

  2 2 2 2
2

1
2 4 4

4
P k k k k       2 21

4 2
2

k k k     

  
2

1 0

4
1 1

2

k k
k k kP P
  

      
 
 

 

 2 1 0P kP P  , which is true for 2n  . 

We now assume that the result is true for some positive integer t. 

Thus 1 2t t tP kP P    holds. 

Now 1 1 2
1

t t
tP    
    1 1

1 0 1
t t t

t tkP P k kP P   
       

This proves that result is true for all positive integer n. 

We also have the following result: 

Lemma 2.6.10 1 2; 2n n nQ kQ Q n    . 

We now prove a result which gives the value of ,n
L

kF in terms of power of . 
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Page | 26 
 

3.1 The Sequence  (1, )nF k , an Introduction: 

In chapter- 2, we defined a generalization of the Fibonacci sequence and call it the 

generalized Fibonacci sequence. The terms of this sequence are defined by the recurrence relation 

1 2( , ) ( , ) ( , ); 2n n nF a b aF a b bF a b n    , 

with initial condition 0 ( , ) 0F a b   and 1( , ) 1F a b  ; where a  and b  are any fixed integers.  

We note that this generalization is in fact a family of sequences and each new choice of  

a  and b  produces a distinct sequence. One of the purpose of this chapter is to study the 

subsequence  (1, )nF k of  ( , )nF a b by considering 1a  and b k . The sequence   (1, )nF k  is 

called the right k-Fibonacci sequence which uses one real parameter k. We write it as

,(1, ) R
n k nF k F . 

Definition: For any real number k, sequence  ,
R

k nF , the sequence of right k- Fibonacci 

numbers is generated by the recurrence relation , , 1 , 2 , 2R R R
k n k n k nF F kF n    ;  

where ,0 0R
kF   and ,1 1R

kF  . 

First few terms of this sequence are shown in the following table: 

 

n      ,n
R

kF  

 0     0 

 1     1 

 2     1 

 3          1 k  

 4           1 2k   

 5        21 3k k   

 6      21 4 3k k    

 7     2 31 5 6k k k    

 8          2 31 6 10 4k k k    

 9         2 3 41 7 15 10k k k k     
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 10        2 3 41 8 21 20 5k k k k     

Appendix-II is computer program to obtain terms of right k- Fibonacci sequence  nG

using the programming language MATLAB (R2008a). 

 If 1k  , we get classic Fibonacci sequence defined by 0 10, 1F F   and 

1 2 , 2n n nF F F n    . This gives the sequence   0,1,1, 2,3,5,8,13, 21,....nF   

 If 2k  , we obtain classic Pell’s sequence  defined by 0 10, 1P P   and 

1 22 , 2n n nP P P n    . Here we have   0,1,1,3,5,11, 21, 43,85,171,....nP   

 If 3k  , we get following sequence  defined 0 10, 1H H   and 

1 23 , 2n n nH H H n    . This gives the sequence   0,1,1, 4,7,19, 40,97,...nH   

3.2 Some basic identities of right k- Fibonacci numbers: 

One of the purposes of this chapter is to develop many of the identities needed in the 

subsequent chapters. We use the technique of induction as a useful tool in proving many of these 

identities and theorems involving Fibonacci numbers. 

We denote the sum of first n right k- Fibonacci numbers by nS and prove some identities 

related with the summation of right k-Fibonacci numbers. 

Lemma 3.2.1 ,i , 2
1

1
( 1)

n
R R

n k k n
i

S F F
k




   . 

Proof: We have , , 1 , 2 , 2R R R
k n k n k nF F kF n    . Replacing n by 2, 3, 4,… we get  

,2 ,1 ,0
R R R

k k kF F kF   

   ,3 ,2 ,1
R R R

k k kF F kF   

   ,4 ,3 ,2
R R R

k k kF F kF   

      

   , 2 , 3 , 4
R R R

k n k n k nF F kF     

   , 1 , 2 , 3
R R R

k n k n k nF F kF     

   , , 1 , 2
R R R

k n k n k nF F kF    
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Now adding all these equations term by term, we get

,2 ,3 , ,1 ,2 ,n 1 ,0 ,1 ,2 ,n 2(F F F ) k(F F F F )R R R R R R R R R R
k k k n k k k k k k kF F F               

 

, ,1 ,0 ,1 ,2 , , 1 ,( F F F ) F kR R R R R R R R
k n k k k k k n k n k nF F k F k F          

,1 ,2 , , , 1 , ,1( )R R R R R R R
k k k n k n k n k n kk F F F F kF kF F          

    , 1 , , 21 1R R R
k n k n k nF kF F     

 

,1 ,2 ,3 , , 2

1
( 1)R R R R R

k k k k n k nF F F F F
k

       . 

Lemma 3.2.2 
2

2 , ,2 2
1

1
( 1)

n
R R

n k i k n
i

S F F
k




   . 

Proof: We have , , 1 , 2 , 2R R R
k n k n k nF F kF n    . Replacing n by 2, 3, 4,… we get  

,2 ,1 ,0
R R R

k k kF F kF   

   ,3 ,2 ,1
R R R

k k kF F kF   

   ,4 ,3 ,2
R R R

k k kF F kF   

      

   ,2 1 ,2 2 ,2 3
R R R

k n k n k nF F kF     

   ,2 ,2 1 ,2 2
R R R

k n k n k nF F kF    

Now adding all these equations term by term, we get 

,2 ,3 ,2 ,1 ,2 ,2n 2 ,2n 1(1 k)(F F F ) FR R R R R R R
k k k n k k k kF F F           

 

,1 ,2 ,2 ,1 ,1 ,2 ,2

,2 1 ,2 ,2 1

F F F (1 )(F F F )

(1 )(F )

R R R R R R R
k k k n k k k k n

R R R
k n k n k n

F k

k F F 

        

   

 

,1 ,2 ,2 ,2 ,2 1 ,2 ,1( )R R R R R R R
k k k n k n k n k n kk F F F F kF kF F              

  ,2 1 ,2 ,2 21 1R R R
k n k n k nF kF F      ,1 ,2 ,3 ,2 ,2 2

1
( 1)R R R R R

k k k k n k nF F F F F
k

       . 

The following results follow immediately from above two lemmas. 

Corollary 3.2.3  , 2 1R
k nF mod k  and  ,2 2 1R

k nF mod k  . 
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Proof: We use Mathematical Induction to prove the first result. 

For 1n  , we have  ,1 2 ,3 1 1R R
k kF F k mod k     . 

We now assume that the result is true for some positive integer n r .Thus by assumption, 

 ,r 2 1R
kF mod k    holds. 

Now  ,r 1 2 ,r 3 ,r 2 ,r 1 1R R R R
k k k kF F F kF mod k        . 

So the result is true for 1n r  also. This proves the result for all integers n. 

The second result can be proved on the same line. 

An alternate method of proving Lemma 3.2.1 is to apply the principle of mathematical 

induction. Using the same process or by induction we can derive formulae for the sum of the first 

n right k-Fibonacci numbers with various subscripts. 

We next find the sum of first n right k-Fibonacci numbers with only odd or even 

subscripts. 

Lemma 3.2.4 ,2 1 ,2 2 ,2 1
1

1
( 1)

(2 )

n
R R R

k i k n k n
i

F F kF k
k k

  


   


 .   

Proof: We have , , 1 , 2 , 2R R R
k n k n k nF F kF n    . Replacing n by 3, 5, 7 … we get 

,3 ,2 ,1
R R R

k k kF F kF 
 

   ,5 ,4 ,3
R R R

k k kF F kF 
 

   ,7 ,6 ,5
R R R

k k kF F kF 
 

   


 

   ,2 1 ,2 2 ,2 3
R R R

k n k n k nF F kF   
 

Adding all these equations term by term and using Lemma 3.2.2, we get 

,1 ,3 ,5 ,2 1 ,1 ,2 ,4 ,2 2

,1 ,3 ,2 3

( )

( )

R R R R R R R R
k k k k n k k k k n

R R R
k k k n

F F F F F F F F

k F F F

 



        

   

 


 

,1 ,3 ,5 ,2 1 ,1 ,2 ,2 1 ,2

,1 ,3 ,5 ,2 1 ,2 ,2 1

2( ) 1 ( )

( )

R R R R R R R R
k k k k n k k k n k n

R R R R R R
k k k k n k n k n

F F F F F F F F

k F F F F F kF
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,1 ,3 ,5 ,2 1 ,2 ,2 1 ,1 ,2 ,2(2 )( ) 1 ( ) ( )R R R R R R R R R
k k k k n k n k n k k k nk F F F F F kF F F F              

,1 ,3 ,5 ,2 1 ,2 1 ,2 2

1
(2 k)( ) 1 ( 1)R R R R R R

k k k k n k n k nF F F F F F
k

           

,1 ,3 ,5 ,2 1 ,2 2 ,2 1

1
( 1)

(2 )
R R R R R R

k k k k n k n k nF F F F F kF k
k k

          


 . 

Lemma 3.2.5 2
,2 ,2 2 ,2

1

1
( 1)

(2 )

n
R R R

k i k n k n
i

F F k F
k k




  


 .

 

Proof: We have , , 1 , 2 , 2R R R
k n k n k nF F kF n    . Replacing n by 2, 4, 6, …, we get 

,2 ,1 ,0
R R R

k k kF F kF 
 

   ,4 ,3 ,2
R R R

k k kF F kF 
 

   ,6 ,5 ,4
R R R

k k kF F kF 
 

   


 

   ,2 ,2 1 ,2 2
R R R

k n k n k nF F kF  
 

Adding all these equations term by term and using Lemma 3.2.2, we get 

,2 ,4 ,6 ,2 ,1 ,3 ,5 ,2 1

,2 ,4 ,6 ,2 2

( )

( )

R R R R R R R R
k k k k n k k k k n

R R R R
k k k k n

F F F F F F F F

k F F F F





        

    

 


   

,2 ,4 ,6 ,2 ,1 ,2 ,3 ,2

,2 ,4 ,6 ,2 ,2

2( ) ( )

( )

R R R R R R R R
k k k k n k k k k n

R R R R R
k k k k n k n

F F F F F F F F

k F F F F kF

         

     

 


 

,2 ,4 ,6 ,2 ,1 ,2 ,3 ,2 ,2(2 )( ) ( )R R R R R R R R R
k k k k n k k k k n k nk F F F F F F F F kF              

     ,2 2 ,2

1
( 1)R R

k n k nF kF
k

    

 2
,2 ,4 ,6 ,2 ,2 2 ,2

1
( 1)

(2 )
R R R R R R

k k k k n k n k nF F F F F k F
k k

       


 . 

We now prove a result which gives the value of product of two consecutive generalized 

Fibonacci numbers. 

3.3 Some more identities for right k-Fibonacci numbers: 

We now derive some more interesting identities for ,n
R

kF . First we prove an interesting 

reduction formula. 
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Lemma 3.3.1 ,m n ,m 1 , ,m , 1
R R R R R

k k k n k k nF kF F F F    . 

Proof: Let m be the fixed positive integer. We proceed by inducting on n. 

For 1n  , we have ,m 1 ,m 1 ,1 ,m ,2
R R R R R

k k k k kF kF F F F   . 

Since ,1 ,2 1R R
k kF F   , we have , 1 , , 1

R R R
k m k m k mF F kF   , which is true.  

This proves the result for 1n  .  

Now let us assume that the result is true for all integers up to some integer ‘t’.  

Thus both ,m ,m 1 , ,m , 1
R R R R R

k t k k t k k tF kF F F F     and ,m ( 1) ,m 1 , 1 ,m ,
R R R R R

k t k k t k k tF kF F F F     holds.  

Now, from these two results we have ,m , ( 1) ,m 1 , , 1 , , 1 ,( ) ( )R R R R R R R R
k t k m t k k t k t k m k t k tF kF kF F kF F F kF           

,m 1 , 1 ,m , 2
R R R R

k k t k k tkF F F F     

,m 1 , 1 ,m ,( 1) 1 ,m ( 1)
R R R R R

k k t k k t k tkF F F F F        , this is obviously true.  

Thus by the principal of mathematical induction, the result is true for all positive integers n.  

It is often useful to extend the sequence of right k-Fibonacci numbers backward with 

negative subscripts. In fact, if we try to extend the right k- Fibonacci sequence backwards still 

keeping to the same rule, we get the following:  

   

n       ,n
R

kF    

  -1      
1

k
 

  -2                                 
2

1

k
  

  -3           
3

1 k

k


 

  -4            
4

1 2k

k


  

  -5        
2

5

1 3k k

k

 
 

  -6     
2

6

1 4k 3k

k

 
  

  -7     
2 3

7

1 5 6k k k

k

  
 

  -8          
2 3

8

1 6k 10k 4k

k
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Thus the sequence of right k- Fibonacci numbers is a bilateral sequence, since it can be 

extended infinitely in both directions. From this table and from the table of values of ,n
R

kF , the 

following result follows immediately: 

Lemma 3.3.2 
1

, ,

( 1)
, 1

n
R R

k n k nn
F F n

k






  . 

Note: This result will prove later on by Binet’s Formula.  

We now obtain the extended d’Ocagne’s Identity for this sequence. 

Lemma 3.3.3  , , , 1 , 1 ,

( 1)n
R R R R R

k m n k m k n k m k nn
F F F F F

k
  


  .     

Proof: Replacing n by n  in Lemma 3.3.1, we get , , 1 , , , 1
R R R R R

k m n k m k n k m k nF kF F F F      . 

Using the definition of left k- Fibonacci sequence and Lemma 3.3.2,  

we get 

1

, , 1 , , , 11

( 1) ( 1)n n
R R R R R

k m n k m k n k m k nn n
F kF F F F

k k



  

 
   

  , , 1 , 1 ,1

( 1)
( )

n
R R R R

k m k n k m k nn
F F F F

k
 


   

  , , 1 , , 1 , ,1

( 1) 1 1
[ ( ) ( ) ]

n
R R R R R R

k m k n k n k m k m k nn
F F F F F F

k k k
 


     

 , , , 1 , 1 ,

( 1)n
R R R R R

k m n k m k n k m k nn
F F F F F

k
  


   . 

We next prove the divisibility property for ,n
R

kF . 

Lemma 3.3.4 , ,
R R

k m k m nF F ; for any non-zero integers m and n.    

Proof: Let m be any fixed positive integer. We proceed by inducting on n. 

For 1n  , we have , ,
R R

k m k mF F , which is obvious. This proves the result for 1n  . 

Now assume that the result is true for all integers n up to some integer ‘t’. 

Thus , ,
R R

k m k mtF F  hold by assumption. 
 

Then , ( 1) , , 1 , , , 1
R R R R R R

k m t k mt m k mt k m k mt k mF F kF F F F      . 

But by assumption, we have , ,
R R

k m k m tF F . Thus ,
R

k mF divides the entire right side of the 

above equation. Hence , , ( 1)
R R

k m k m tF F  , this proves the result for all positive integers n. 
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Note: By Lemma 3.3.2 it is obvious that the above divisibility criterion holds for negative 

values of n also. 

Lemma 3.3.5 2 2
, , 1 ,2 1

1 1R R R
k n k n k nF F F

k k
   .       

Proof: Here also we use the principal of mathematical induction. 

For 1n  , we have 2 2
,1 ,2 ,3

1 1 1 1
1 (1 k) FR R R

k k kF F
k k k k

      . 

This proves the result for 1n  . 

We assume that it is true for all integers up to some positive integer ‘t’.

2 2
, , 1 ,2 1

1 1
FR R R

k t k t k tF F
k k

   
 
holds by assumption. 

Now 2 2 2 2
, 1 , 2 , 1 , 1 ,

1 1
F (F F )R R R R R

k t k t k t k t k tF F k
k k

        

   2 2 2 2
, 1 , 1 , , 1 ,

1
(F 2 F F )R R R R R

k t k t k t k t k tF k k F
k

       

   2 2 2
, 1 ,t , 1 , , 1 , , 1

1
(F F F F )R R R R R R R

k t k k t k t k t k t k tF kF k kF
k

          

   2 2
, , 1 , 1 , 1 , , , 1

1 1
(F ) [ ( ) ]R R R R R R R

k t k t k t k t k t k t k tk F F F kF kF F
k k

         

   ,2 1 , 1 , 2 , , 1

1 1
( ) [F F ]R L L L L

k t k t k t k t k tk F kF F
k k

       

,2 1 , , 1 , 1 , 2

1
F (k F )R R R R R

k t k t k t k t k tF F F
k

       

,2 1 , 1 1 ,2 3 ,2( 1) 1

1 1
F FR R R R

k t k t t k t k tF F
k k

           

This proves the result by induction. 

Now, we derive a result which connects three consecutive right k- Fibonacci numbers 

with odd subscript. 

Lemma 3.3.6 2
,2 5 ,2 3 ,2 1(2 1) 0R R R

k n k n k nF k F k F      . 

Proof: By definition 

 ,2 5 ,2 4 ,2 3 ,2 3 ,2 2 ,2 3( )R R R R R R
k n k n k n k n k n k nF F kF F kF kF           

   ,2 3 ,2 2( 1) .R R
k n k nk F kF     
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Now 2
,2 5 ,2 3 ,2 1(2 1)R R R

k n k n k nF k F k F      

  2
,2 3 ,2 2 ,2 3 ,2 1( 1) (2 1)R R R R

k n k n k n k nk F kF k F k F          

  ,2 3 ,2 3 ,2 2 ,2 1( 1) (2 1) ( )R R R R
k n k n k n k nk F k F k F kF          

,2 3 ,2 3 ,2 3( 1) (2 1) 0R R R
k n k n k nk F k F kF        . 

We finally prove the analogous of one of the oldest identities involving the Fibonacci 

numbers - Cassini’s identity.
 

Lemma 3.3.7 2 1
, 1 , 1 ,. ( 1) .R R R n n

k n k n k nF F F k 
     . 

Proof : We have 2 2
, 1 , 1 , , , 1 , 1 ,. ( )R R R R R R R

k n k n k n k n k n k n k nF F F F kF F F        

    2 2
, , 1 , , 1
R R R R

k n k n k n k nF F F kF     

    2
, , 1 , , 1( )R R R R

k n k n k n k nF F F kF     

    2
, , 2 , 1( )R R R

k n k n k nF kF kF     

    2
, , 2 , 1( )R R R

k n k n k nk F F F     

Repeating the same process successively for right side, we get

2 2 2
, 1 , 1 , , 1 , 3 , 2( ) ( )R R R R R R

k n k n k n k n k n k nF F F k F F F         

2
,1 , 1 ,0( ) ( . )n R R R

k k kk F F F    

11
( ) (1. 0) ( 1) .n n nk k

k
      

Since the value of  ,1 ,0 , 1

1
1, 0,R R R

k k kF F F
k

    , we have    

 2 1
, 1 , 1 ,. ( 1) .R R R n n

k n k n k nF F F k 
      

We now prove an interesting result which expresses the right k– Fibonacci number as 

the sum of the preceding right k– Fibonacci numbers. 

Lemma 3.3.8 
2

, ,
0

1 ; 2
n

R R
k n k i

i

F k F n




   . 

Proof: We prove this result by the principal of mathematical induction. 

For 2n  , we have ,2 ,01 1 (0) 1R R
k kLHS F k F RHS       .  
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This proves the result for 2n  . 

We assume that it is true for all integers up to some positive integer ‘t. 

Thus 
2

, ,
0

1 ; 2
t

R R
k t k i

i

F k F t




   , holds by assumption. 

Now we consider the right side of the result to be proved for 1n t  .  

Since ,0 0R
kF  ,  

,1 ,2 ,3 ,t 11 (F F F F )R R R R
k k k kRHS k       

,2 ,1 ,2 ,3 ,t 1F F (F F F )R R R R R
k k k k kk k       

,3 ,2 ,3 ,4 , 1( )R R R R R
k k k k k tF kF k F F F        

Continuing this process on right hand side, the last term will be  

 , , 1 , 1
R R R

k t k t k tRHS F kF F LHS       

 The result is true for 1n t  . This proves the result by induction. 

Lemma 3.3.9 , , 1gcd( , ) 1, 0,1, 2,3,...R R
k n k nF F n     

Proof: Suppose that ,
R

k nF  and , 1
R

k nF  are both divisible by a positive integer d. Then clearly 

, 1 , , , 1 , , 1
R R R R R R

k n k n k n k n k n k nF F F kF F kF        

will also be divisible by d. Then right hand side of this result is divisible by d. 

This gives , 1/ R
k nd kF  . 

First we claim that ,
R

k nF  is always relatively prime to k. 

From the lemma 3.3.8, we have
2

, ,
0

1 ; 2
n

R R
k n k i

i

F k F n




   .   

If some integer ' 1d   is divisor of both ,
R

k nF
 
and k, then from above result it is clear that

'd must divide 1, a contradiction. Thus ,
R

k nF  is always relatively prime to k. ,n 1
R

kd F    .     

Continuing this argument we see that , 2 , 3,R R
k n k nd F d F    and so on. Eventually, we must 

have ,1
R

kd F . Since ,1 1R
kF  we get 1d  , this proves the required result. 

As we define matrix in Chapter- 2, we demonstrate a close link between matrices and 

right k- Fibonacci numbers. We define an important 2 2 matrix
0

1 1

k
U

 
  
 

, which plays a 

significant role in discussions concerning right k- Fibonacci sequence. 
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We prove the following results, which will be used later in the chapter. 

Lemma 3.3.10 (1) 2U U kI    (2)  2 11
U I U

k
   . 

Proof:  We have 2 0 0

1 1 1 1 1 1

k k k k
U

k

     
            

 

  
0 1 0

1 1 0 1

k
k

   
    
   

 

  U kI   

(2) Again 2

1 1

k k
U

k

 
   

1

2

2

11

1 1 1

k k k k
U

k kk



     
         

 

and 

1

1 0 11

1 1 1 0

k k
U

k



    
        

 

 1

2

1 0 11 1 1

0 1 1 0

k
I U

k k k
    

         
 

  
2

0 11

0 1 0

k k

kk

     
         

 

  2

2

11

1

k k
U

kk
  

   
, this proves the results. 

Lemma 3.3.11  If 
0

1 1

k
U

 
  
   

then , 1 ,

, , 1

R R
k n k nn

R R
k n k n

kF kF
U

F F




 
  
 

. 

Proof: We will prove this result by using principal of mathematical induction. 

For 1n  , we have ,0 ,1

,1 ,2

0

1 1

R R
k k

R R
k k

kF kF k
U

F F

   
    

  
,  this proves the result for 1n  . 

Assume that it is true for n t . Thus ,t 1 ,t

,t ,t 1

R R
k kt

R R
k k

kF kF
U

F F




 
  
 

  holds.     

Now 
2

,t 1 ,t ,t ,t , 11

,t ,t 1 ,t 1 , 1 ,t

0

1 1

R R R R R
k k k k k tt t

R R R R R
k k k k t k

kF kF k kF kF k F
U U U

F F F F kF
 

  

    
           

 

  ,t ,t 1

,t 1 ,t 2

R R
k k

R R
k k

kF kF

F F
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Thus the result is true for 1n t  also. This proves the result by induction. 

Remark: Lemma: 3.3.7 can also be proved by using this matrix U.  

We have, 
0

1 1

k
U

 
  
 

then U k  .  

Also , 1 ,

, , 1

R R
k n k nn

R R
k n k n

kF kF
U

F F




 
  
 

. Then 2
, 1 , 1 ,

n R R R
k n k n k nU kF F kF   .

2
, 1 , 1 ,

n R R R
k n k n k nU k F F F 

      

  2
, 1 , 1 ,

n R R R
k n k n k nk k F F F 

       

 2 1
, 1 , 1 , 1

nR R R n
k n k n k nF F F k 

     . 

We can apply above Lemma to derive four new identities as the next corollary shows, 

although they are basically the same. 

In the next article, first, we describe the terms of the right k-Fibonacci sequence ,
R

k nF  

explicitly by using a generalization of Binet’s formula. We will start the main content of the 

second part by deriving a generalization of Binet’s formula (Via generating functions) and then 

will present extensions of well known Fibonacci Identities such as Cassini’s, Catalan’s, 

d’Ocagne’s.
 

3.4 Generating function for right k-Fibonacci number: 

Generating functions provided a powerful technique for solving linear homogeneous 

recurrence relations. In this section, we consider the generating functions for the generalized 

right k- Fibonacci sequence and derive some identities satisfied by this sequence. 

Lemma 3.4.1 The generating function for the generalized right k -Fibonacci sequence  ,
R

k nF  

is given by
2

( )
1

x
f x

x kx


 
. 

Proof: We begin with the formal power series representation of generating function for ,
R

k nF . 

2 3
, 0 1 2 3

0 0

( ) ...R m m
k m m

m m

f x F x g x g g x g x g x
 

 

         .   

 2 3 4
1 0 2 1 3 20 (1) ( ) ( ) ( )x g kg x g kg x g kg x          
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 2 2 2
0 1 2 1 2( ) ( )x g g x g x x kx g x g x          

2( ) ( )x xf x kx f x    

 2

2
(1 ) ( ) ( )

1

x
x kx f x x f x

x kx
     

 
. 

This is the generating function of  ,
R

k nF . 

3.5 Extended Binet’s formula for ,
R

k nF : 

For any positive real number k , the right k -Fibonacci sequence  ,
R

k n n N
F


is defined 

recurrently by , 1 , , 1, 1R R R
k n k n k nF F kF n    where ,0 ,10, 1R R

k kF F  which is second order difference 

equation with constant coefficients. Therefore, it has the characteristic equation, 2 0x x k   .  

The roots of the characteristic equations are 
1 1 4

2

k


 
 and 

1 1 4

2

k


 
 . For

0, 0 , .k        Also 1, k      and 1 4k    . The following theorem is 

the extended Binet’s formula for ,
R

k nF  . 

Theorem 3.5.1 Prove that ,

n n
R

k nF
 

 





. 

Proof: The generating function for the generalized right k-Fibonacci sequence is given by

2
( )

1

x
f x

x kx


 
.We rewrite ( )f x  as  ( )

(1 )(1 ) 1 1

x A B
f x

x x x x   
  

   
 

Solving these we get
1 1

,A B
   


 

 
. Thus

1 11 1 1 1
( ) (1 ) (1 )

1 1
f x x x

x x
 

     
  

             
 

2 2 2 21
[(1 ) (1 )]x x x x   

 
       


 

0 0 0

1
( )

n n
n n n n n

n
n n n

x x g x
 

 
   

  

  


   

 
    

Since we have 

nn

ng
 

 





. Hence ,

n n
L

k nF
 

 





. 

This is the extended Binet’s formula for ,
R

k nF . 
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Particular cases of these sequences are as follows: 

 If 1k  , for the classical Fibonacci sequence, we have 
1 5

2



 and

1 5

2



 ,    is known 

as the golden ratio. 

 If 2k  , for the Pell’s sequence, we have 2  and 1   ,  is known as the silver ratio. 

 Finally, if 3k   for the sequence  nH , we have 
1 13 1 13

,
2 2

 
 

   where  is 

known as bronze ratio. 

Remark: We prove the Lemma 3.3.2 by using the Binet’s formula. 

We have ,

n n
R

k nF
 

 





. Substituting n  in place of n , we get 

 
 ,

n nn n
R

k n n n
F

  

     

 



 
 

 
.  Hence 

1

, ,

( 1)
, 1

n
R R

k n k nn
F F n

k






  , as required. 

Lemma 3.5.2 (Extended Catalan’s identity)  2 1 2
, , , ,( 1)R R R n r n r R

k n r k n r k n k rF F F k F  
      

Proof:  By using theorem 3.5.1 and 1, k       in LHS, we get 

2
n r n r n r n r n n

LHS
     

     

       
  

   
 

   
 

2 2

2

2n r n r n r n r n n n n       

 

       




 
     2 2

2

1
2

n r n r nr r    
 

     
 

 

 
 2 2

2
2

n r

rr r
  

 




   
 

 

 
 

2

2

n r

r rk
 

 


 

 


   
2

1 1 2
,1 1

r r
n r n rn r n r R

k rk k F
 

 

     
    

 
. 

This proves the required result. 

Now we derive the extended d’Ocagne’s identity for ,
R

k nF . 

Lemma 3.5.3 If m n then ,m , 1 ,m 1 , ,m n( 1)R R R R n n R
k k n k k n kF F F F k F     . 

Proof: By using theorem 3.5.1 and 1, k       on LHS, we get 
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1 1 1 1m m n n m m n n

LHS
       

       

      
 

   
 

  
 

      1 1 1 1

2

1 m m n n m m n n       
 

          
 

  
 

         

1 1 1 1

2

n m n n m m n n m

n n n n

        

     

    
     

   

 

  
 

 
1 1

2

n

m n m n m n m nk
    

 

     
      


 

  
 

 
   2

n

m n m nk
     

 

 
     


 

  
 

 
  2

n

m n m nk
   

 

 
  


.  

Lemma 3.5.4 The sum of first  1n terms of the right k- Fibonacci numbers is given by

 , , , 2
0

1
1

n
R R R

k i k n k n
i

F S F
k




   . 

Proof: By theorem 3.5.1, ,
R
k nS can be written as 

,
0 0 0

1 1
( )

n n n
R i i i i
k n

i i i

S    
     

 
       

    

1 11 1 1

1 1

n n 

   

   
  

   
 

    

1 1 1 11 1

1 1

n n n n      

   

         


  
 

  

1 1n n n nk k

k

     

 

      


 
 

     
  

1 1n n n nk

k
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Since, we have   1 1 k    
 
and 

1 1 4 1 1 4
,

2 2

k k
 

   
   we get

 

1 1

, , 1 ,

1 1
1 1

n n n n
R R R
k n k n k nS F kF

k k

   

   

 



  
           

 

, , 2

1
1R R

k n k nS F
k


     . 

Lemma 3.5.5 ,

, 1

lim
R

k n

Rx
k n

F

F





 .       

Proof:  By using theorem 3.5.1, we have 

,

11 1
, 1

1

lim lim lim

1

n

R n n
k n

nR n nx x x
k n

F

F


  

 
  



   


 
      

  
  
 

 

This happens since, we have lim 0,
n

x


 



 
  

 
.  

We finally prove the following combinatorial identity for ,
R

k nF .  

Lemma 3.5.6  

1

2

, 1
0

1
1 4

2 12

n

iR
k n n

i

n
F k

i

 
 
 




 
  

 
 . 

Proof: By using 
1 1 4 1 1 4

,
2 2

k k
 

   
  and 1 4 ,k k      

,

1 1 1 4 1 1 4

2 21 4

n n
n n

R
k n

k k
F

k

 

 

        
                

   1
1 1 4 1 1 4

2 1 4

n n

n
k k

k

      
  

 

 

2

2

1 4 1 4
1 21

2 1 4
1 4 1 4

1 2

n

n n
k k

k n n
k k

     
        

     
  

      
          

     





 
31

2 1 4 2 1 4
1 32 1 4n

n n
k k

k

    
        

     


 

 

1

2

, 1
0

1
1 4

2 12

n

iR
k n n

i

n
F k

i

 
 
 




 
   

 
 . 



Chapter – 4 

 

 

 

Associated left and right 

k- Fibonacci numbers 
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4.1 Introduction: 

In [1] Alvaro H. Salas defined the sequence  , 0k n n
A




associated to  , 0k n n

F



as

, , , 1k n k n k nA F F    where ,0 1kA  for n=1,2,3,…. He then defines associated k- Fibonacci 

numbers by recurrence relation 

, , 1 , 2 ; 2k n k n k nA kA A n   
 
where ,0 1kA  . 

In this chapter we define associated left k- Fibonacci sequence ,
L
k nA  and associated 

right k- Fibonacci sequence ,
R
k nA and prove some interesting properties of both associated left 

k- Fibonacci numbers and associated right k- Fibonacci numbers. Despite its simple appearance, 

this sequence contains a wealth of subtle and fascinating properties. In this chapter we explore 

several of the fundamental identities related with ,
L
k nA

 
and  ,

R
k nA . 

4.2 The associated left �-Fibonacci numbers: 

Definition: The sequence of associated left k- Fibonacci numbers ,
L
k nA associate to left k-

Fibonacci sequence ,
L

k nF is defined as ,0 1L
kA  and , , , 1 1, 3 ., 2,L L L

k n k n k n nA F F     

We observe that the expression ,
L
k nA is the sum of the two consecutive left k-Fibonacci 

numbers ,
L

k nF  and its predecessor , 1
L

k nF  . The members of the sequence  ,
L
k nA  will be called 

associated left k-Fibonacci numbers. An equivalent definition for the sequence ,
L
k nA is 

 
,

, 1 , 2

1 ,  0

1 ,  1

1 ,  2

L
k n

L L
k n k n

if n

A if n

k F F if n 

 


 


  

 

Observe that , , , 1 , 1 , 2 , 2 , 3
L L L L L L L
k n k n k n k n k n k n k nA F F kF F kF F           

  , 1 , 2 , 2 , 3( )L L L L
k n k n k n k nk F F F F       , 1 , 2

L L
k n k nkA A    

This allows defining recursively the sequence of associated left k-Fibonacci numbers as 
follows: 
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,

, 1 , 2

1,  0

1,  1

,  2

L
k n

L L
k n k n

if n

A if n

kA A if n 

 


 


 

 

Members of associated left k- Fibonacci sequence  ,
L
k nA will be called associated left k- 

Fibonacci numbers. Some of them are 

n      ,
L
k nA  

0     1 

 1     1 

 2          1k   

 3        2 1k k   

 4           3 2 2 1k k k     

 5        4 3 23 2 1k k k k     

 6             5 4 3 24 3 3 1k k k k k       

 7         6 5 4 3 25 4 6 3 1k k k k k k       

 8       7 6 5 4 3 26 5 10 6 4 1k k k k k k k        

 9        8 7 6 5 4 3 27 6 15 10 10 4 1k k k k k k k k          

 10            9 8 7 6 5 4 3 28 7 21 15 20 10 5 1k k k k k k k k k          

Appendix-III is computer program to obtain terms of associated left k- Fibonacci 

sequence  nA using the programming language MATLAB (R2008a). 

4.3 Basic identities of associated left k- Fibonacci numbers: 

One of the purposes of this chapter is to develop many identities and results. We use the 

technique of induction as a useful tool in proving many of these identities and theorems 

involving Fibonacci numbers. 

Lemma 4.3.1 , , 1gcd (A , A ) 1, 0,1, 2,3,...L L
k n k n n   

 

Proof:  Suppose that ,
L
k nA   and , 1

L
k nA   are both divisible by a positive integer �. Then their 

difference , 1 , , , 1 ,
L L L L L
k n k n k n k n k nA A kA A A       , , 1( 1) A L L

k n k nk A        
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will also be divisible by d . Then right hand side of this equation is divisible by d . Thus 

, 1
L
k nd   . Continuing we see that , 2 , 3,L L

k n k nd d     and so on…  

Eventually, we must have ,1
L
kd   . But ,1 1L

kA 
 
then 1d  . Since the only positive integer which 

divides successive terms of the associated left k - Fibonacci sequence is 1. This proves the 

required result. 

Next we derive the formula for sum of the first n associated left k - Fibonacci numbers. 

Lemma 4.3.2 ,1 ,2 ,3 , , 1 ,

1
(A 2)L L L L L L

k k k k n k n k nA A A A A
k

       . 

Proof: We have  , , 1 , 2 , 2L L L
k n k n k nA kA A n    .

 

Replacing n by 2, 3, 4… we have  

   ,2 ,1 ,0 ,L L L
k k kA kA A   

   ,3 ,2 ,1,L L L
k k kA kA A   

   ,4 ,3 ,2
L L L
k k kA kA A   

      

   , 1 , 2 , 3
L L L
k n k n k nA kA A     

   , , 1 , 2
L L L
k n k n k nA kA A    

Adding all these equations term by term, we get 

,1 ,2 ,3 ,
L L L L
k k k k nA A A A     

,1 ,1 ,2 ,n 2 ,n 1 ,0( 1)(A ) kA AL L L L L L
k k k k k kA k A A           

,0 ,1 ,1 ,2 , ,n 1 ,n( 1)(A ) A (k 1)L L L L L L L
k k k k k n k kA A k A A A           

,1 ,2 , ,0 ,1 , 1 , ,(1 k 1)(A ) ( )L L L L L L L L
k k k n k k k n k n k nA A A A A kA A            

,1 ,2 , ,n 1 ,(A ) 2 ( )L L L L L
k k k n k k nk A A kA A         

,1 ,2 ,3 , , 1 ,

1
(A 2)L L L L L L

k k k k n k n k nA A A A A
k

        . 

An alternate method of proving Lemma 4.3.2 is to apply the principle of mathematical 

induction. Using the same process or by induction we can derive formulae for the sum of the first 

n associated left k-Fibonacci numbers with various subscripts. 
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We next derive the sum of first n associated left � −Fibonacci numbers with only odd or 

even subscripts. 

Lemma 4.3.3 ,1 ,3 ,5 ,2 1 ,2

1
( 1)L L L L L

k k k k n k nA A A A A
k

      . 

Proof: We have , , 1 , 2 , 2L L L
k n k n k nA kA A n    . Replacing n  by 2, 4, 6… we have  

 

   ,2 ,1 ,0
L L L
k k kA kA A   

   ,4 ,3 ,2
L L L
k k kA kA A   

   ,6 ,5 ,4
L L L
k k kA kA A   

      

   ,2 2 ,2 3 ,2 4
L L L
k n k n k nA kA A      

   ,2 ,2 1 ,2 2
L L L
k n k n k nA kA A    

Adding all these equations term by term, 

,2 ,4 ,6 ,2
L L L L
k k k k nA A A A       

,1 ,3 ,2 1 ,0 ,2 ,4 ,2 2(A ) ( )L L L L L L L
k k k n k k k k nk A A A A A A              

,0 ,1 ,3 ,2 1 ,2 ,4 ,2 ,2A (A ) ( )L L L L L L L L
k k k k n k k k n k nk A A A A A A            

,0 ,1 ,3 ,2 1 ,20 A (A )L L L L L
k k k k n k nk A A A         

,1 ,3 ,2 1 ,2

1
( 1)L L L L

k k k n k nA A A A
k

      . 

Lemma 4.3.4 ,2 ,4 ,6 ,2 ,2 1

1
(A 1)L L L L L

k k k k n k nA A A A
k

      . 

Proof: We know that   ,n ,n 1 ,n 2 , 2L L L
k k kA kA A n      

 Replacing n by 1, 3, 5 … we have 

    ,1 1L
kA   

    ,3 ,2 ,1
L L L
k k kA kA A   

    ,5 ,4 ,3
L L L
k k kA kA A   

         

    ,2 1 ,2 2 ,2 3
L L L
k n k n k nA kA A     



Page | 46 
 

Adding all these equations term by term, 

,1 ,3 ,5 ,2 1
L L L L
k k k k nA A A A      

 ,1 ,2 ,4 ,2 2 ,1 ,3 ,2 3A (A )L L L L L L L
k k k k n k k k nk A A A A A            

,1 ,2 ,4 ,2 ,2

,1 ,3 ,2 1 ,2 1

A (A ) kA

(A )

L L L L L
k k k k n k n

L L L L
k k k n k n

k A A

A A A 

      

   




 

,2 ,4 ,2 ,2 ,2 10 1 (A ) (kA ).L L L L L
k k k n k n k nk A A A          

,2 ,4 ,6 ,2 ,2 1

1
(A 1)L L L L L

k k k k n k nA A A A
k

       .   

The following results follow immediately from above two lemmas. 

Corollary 4.3.5 ,2 1(mod )L
k nA k

 
and ,2 1 1(mod k)L

k nA   . 

Proof: We use Mathematical Induction to prove the first result. 

For 1n  , we have  ,2 1 1L
kA k mod k    

Suppose it is true for n r , Thus  ,2r 1R
kF mod k   holds. 

Now,  ,2r 2 ,2r 1 ,2r 1L L L
k k kA kA A mod k    . 

So the result is true for 1n r  also. This proves the result for all integers n. 

Similarly, we can prove the second result. 

We next investigate the interesting new reduction formula for ,
L
k nA .  

 

Lemma 4.3.6 ,m n ,m 1 , ,m , 1 ,m n 1AL L L L L L
k k k n k k n kA A A A A       .     

Proof Let m  be a fixed integer and we proceed by inducting on n . 

 For 1n   , we have   

  ,m 1 ,m 1 ,1 ,m ,2 ,mAL L L L L L
k k k k k kA A A A A   

 

  ,m 1 ,m 1 ,m ,m(1) (k 1) AL L L L
k k k kA A A      

  ,m 1 ,m ,m 1 ,1 ,2, ( 1, 1)L L L L L
k k k k kA kA A A A k          

 This is obvious.  

Now let us assume that the result is true for 1, 2,3, , tn   ;  
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,m ,m 1 ,t ,m ,t 1 ,m t 1
L L L L L L
k t k k k k kA A A A A A      

 
and

,m (t 1) ,m 1 ,t 1 ,m ,t ,m t 2
L L L L L L
k k k k k kA A A A A A         

We will show that it holds for 1n t  , also from above two equation, we have  

,m t 1 ,m ,m (t 1)
L L L
k k t kA kA A       

 ,m 1 ,t ,m ,t 1 ,m 1 ,t 1 ,m ,t(A ) (A )L L L L L L L L
k k k k k k k kk A A A A A A        

, 1 , , 1 ,m , 1 , ,m t 1 ,m t 2( ) (kA ) ( A )L L L L L L L L
k m k t k t k k t k t k kA kA A A A k A             

,m 1 , 1 ,m ,( 1) 1 ,m t ,m ( 1)
L L L L L L
k k t k k t k k tA A A A A A           

Thus the result is true for all n N . This proves the lemma. 

It is often useful to extend the sequence of associated left k- Fibonacci numbers 

backward with negative subscripts. In fact if we try to extend the associated left k- Fibonacci 

sequence backward still keeping to the same rule, we get the following:   

 n      ,n
L
kA    

  -1               1 k  

  -2            21 k k   

  -3         2 31 2k k k    

  -4    2 3 41 2 3 k kk k     

  -5             2 3 4 51 3 3 4k k k k k      

Thus the sequence of associated left k- Fibonacci numbers is bilateral sequence, since it 

can be extended infinitely in both directions.  

We next prove the divisibility property for ,n
L
kA . 

Lemma 4.3.7 , ,
L L
k m k m nA    for all non-zero integers ,m n . 

Proof:  Let m  be fixed and we will proceed by inducting on n . 

For 1n  . Then it is clear that , ,
L L
k m k mA   . 

 The result is true for 1n  . Assume that the result is true for all 1, 2,3, ,n t  . 

Thus , ,
L L
k m k mtA    holds by assumption. 
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To prove the result is true for 1n t  . Using lemma 4.3.6, we get 

, ( 1) ,
L L
k m t k mt mA A   

, 1 , , , 1 , 1
L L L L L
k mt k m k m t k m k mt mA A A A A       

 , 1 , , , 1 , 1 , 1 , , , 2( )L L L L L L L L L
k mt k m k m t k m k mt k m k m t k m k mt mA A A A A A A A A           

Continuously expand this expression; as by assumption , ,
L L
k m k mtA    

,
L
k mA

 
divides the entire right side of the equation. 

Hence , , (t 1)
L L
k m k mA   . Thus result is true for all 1n  . 

We next derive the formula for the sum of the squares of first n  associated left k- 

Fibonacci numbers. 

Lemma 4.3.8 2 2 2 2
,1 ,2 ,3 ,n , , 1

1
( 1)L L L L L L

k k k k k n k nA A A A A A
k

      . 

Proof: Since we have   , , 1 , 1

1L L L
k m k m k mA A A

k
    

We observe that   2
,m ,m ,m

L L L
k k kA A A   

   ,m , 1 , 1 , , 1 , , 1

1 1L L L L L L L
k k m k m k m k m k m k mA A A A A A A

k k
   

 
    

 
   

Replacing 1, 2,3m n  , we have 

2
,1 ,1 ,2 ,1 ,0

1
(A A )L L L L L

k k k k kA A A
k

   

2
,2 ,2 ,3 ,1 ,2

1
(A )L L L L L

k k k k kA A A A
k

   

2
,3 ,3 ,4 ,2 ,3

1
(A )L L L L L

k k k k kA A A A
k

   

  

2
,n 1 ,n 1 ,n ,n 2 ,n 1

1
(A )L L L L L

k k k k kA A A A
k

      

2
,n ,n ,n 1 ,n 1 ,n

1
(A )L L L L L

k k k k kA A A A
k

   . Adding all these equations, we get 

2 2 2 2
,1 ,2 ,3 ,n , , 1 ,1 ,0

1
( A )L L L L L L L L

k k k k k n k n k kA A A A A A A
k

     
, , 1

1
( 1)L L

k n k nA A
k

  . 
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The following result follows immediately from this lemma. 

Lemma 4.3.9  , , 1 1L L
k n k nA A mod k  . 

Proof:  We use Mathematical Induction to prove the result. 

For 1n  , we have    ,1 ,2 1 1 1 1L L
k kA A k k mod k      

Suppose it is true for n r , Thus  ,r ,r 1 1R R
k kF F mod k    holds. 

Now,  ,r 1 ,r 2 ,r 1 ,r 1 ,r
L L L L L
k k k k kA A A kA A     . 

  2
,r 1 ,r 1 ,r 1L L L

k k kkA A A mod k     

So the result is true for 1n r   also. This proves the result for all integers n. 

Similarly, we can prove the second result. 

We finally prove the extended Cassini’s identity. 

Lemma 4.3.10 2 1
,n 1 ,n 1 ,n ( 1)L L L n

k k kA A A k 
     .    

Proof: We have 2 2
,n 1 ,n 1 ,n ,n ,n 1 ,n 1 ,n( )L L L L L L L

k k k k k k kA A A kA A A A        

    2 2
, , 1 , , 1

L L L L
k n k n k n k nkA A A A     

    2
,n ,n 1 ,n ,n 1( )L L L L

k k k kA kA A A     

    2
,n ,n 2 ,n 1

L L L
k k kA A A      

2
,n ,n 2 ,n 1( 1)( )L L L

k k kA A A    .  

Repeating the same process successively for right side, we get  

 2 1 2
,n 1 ,n 1 ,n ,n ,n 2 ,n 1( 1) ( )L L L L L L

k k k k k kA A A A A A       
 

2 2
,n 1 ,n 3 ,n 2( 1) ( )L L L

k k kA A A      

    3 2
,n 2 ,n 4 ,n 3( 1) ( )L L L

k k kA A A      

        
2

,1 , 1 ,0( 1) ( )n L L L
k k kA A A    

( 1) (1(1 ) 1)n k     

1( 1)nk   . 
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4.4 Generating function of associated left k- Fibonacci numbers: 

The associated left k-Fibonacci number which is defined as ,n 1 ,n ,n 1, 1L L L
k k kA kA A n   

with initial condition ,0 1L
kA   is a second order difference equation with constant coefficient. 

Therefore, it has the characteristic equation 2 1 0x kx   . 

 

Lemma 4.4.1 The generating function for the generalized associated left k- Fibonacci 

sequence  , 0

L
k n n

A



 is given by 

2

1
( )

1

x kx
f x

kx x

 


 
 . 

Proof: We begin with the formal power series representation of generating function for ,
L
k nA  

that is for  ng  . 

2
, 0 1 2

0 0

( ) L m m
k m m

m m

f x A x g x g g x g x
 

 

         

2 3 4
1 0 2 1 3 21 (1) ( ) ( ) ( )x kg g x kg g x kg g x          

2 2 2
1 2 0 1 21 ( ) ( )x kx g x g x x g g x g x           

2 2 2
0 1 2 0 1 21 (g ) ( )x kx g x g x kx x g g x g x             

21 ( ) ( )x kxf x x f x kx      

2

2

1
(1 ) ( ) 1 ( )

1

x kx
kx x f x x kx f x

kx x

 
       

 
. 

This is the generating function for the generalized associated left k- Fibonacci sequence 

 , 0

L
k n n

A



. 

4.5 The associated right k-Fibonacci numbers: 

Definition: We define the sequence  ,
R
k nA  associate to right k-Fibonacci sequence ,

R
k nF as 

,0

1R
kA

k
 and , , , 1 1, 3 ., 2,R R R

k n k n k n nA F F     
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We observe that the expression ,
R
k nA

 
is the sum of the two consecutive right k-Fibonacci 

numbers ,
R

k nF  and its predecessor , 1
R

k nF  . The members of the sequence ,
R
k nA  will be called 

associated right k-Fibonacci numbers. An equivalent definition for the sequence ,
R
k nA

 
is 

,

, 1 , 2

1
,  0

1 ,  1

2 ,  2

k n

k n

R

R R
k n

if n
k

A if n

F kF if n 





 


 



 

Observe that , , , 1 , 1 , 2 , 2 , 3
R R R R R R R
k n k n k n k n k n k n k nA F F F kF F kF           

  , 1 , 2 , 2 , 3( )R R R R
k n k n k n k nF F k F F        

  , 1 , 2
R R
k n k nA kA    

This allows defining recursively the sequence of associated right k-Fibonacci numbers as 

follows ,

, 1 , 2

1
,  0

1 ,  1

,  2

k n

k n

R

R
n

R
k

if n
k

A if n

A kA if n 





 


 



 

Members of associated right k- Fibonacci sequence ,
R
k nA will be called associated right 

k- Fibonacci numbers. Some of them are 

  n      ,
R
k nA  

  0     
1

k
 

  1     1 

  2     2  

  3             2 k  

  4                       2 3k   

  5                     22 5k k   
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  6                   22 7 4k k    

  7               2 32 9 9k k k    

  8                        2 32 11 16 5k k k    

  9                   2 3 42 13 25 14k k k k     

  10                             2 3 42 15 36 30 6k k k k     

Appendix-IV is computer program to obtain terms of associated right k- Fibonacci 

sequence nB using the programming language MATLAB (R2008a). 

4.6 Basic identities of associated right k- Fibonacci numbers: 

Lemma 4.6.1 Sum of the first n associated right k - Fibonacci numbers is given by 

,1 ,2 ,3 , , 2

1
(A 2)R R R R R

k k k k n k nA A A A
k

      . 

Proof:  From the recurrence relation of associated right k- Fibonacci numbers 

  , , 1 , 2 , 2R R R
k n k n k nA A kA n   

  ,0 ,1

1
, 1R R

k kA A
k

   

   ,2 ,1 ,0
R R R
k k kA A kA   

   ,3 ,2 ,1
R R R
k k kA A kA   

      

   , 2 , 3 , 4
R R R
k n k n k nA A kA     

   , 1 , 2 , 3
R R R
k n k n k nA A kA     

   , , 1 , 2
R R R
k n k n k nA A kA    

Adding all these equations term by term, we get 

,1 ,2 ,3 ,
R R R R
k k k k nA A A A     

 ,1 ,1 ,2 ,n 2 ,0 ,n 1(1 k) A kAR R R R R R
k k k k k kA A A A        

 

 ,1 ,0 ,1 ,2 , , 1 ,(1 k) A (1 k) AR R R R R R R
k k k k k n k n k nA kA A A kA            

,1 ,2 , ,2 , 1 , ,n(A ) ( )R R R R R R R
k k k n k k n k n kk A A A kA A kA           
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   , 1 , , 22 (A ) 2R R R
k n k n k nkA A       

,1 ,2 ,3 , , 2

1
(A 2)R R R R R

k k k k n k nA A A A
k

       . 

Lemma 4.6.2 ,1 ,2 ,3 ,2 ,2 2

1
(A 2)R R R R R

k k k k n k nA A A A
k

      . 

 Proof: , , 1 , 2 , 2R R R
k n k n k nA A kA n   

  ,0 ,1

1
, 1R R

k kA A
k

   

   ,2 ,1 ,0
R R R
k k kA A kA   

   ,3 ,2 ,1
R R R
k k kA A kA   

      

   ,2 1 ,2 2 ,2 3
R R R
k n k n k nA A kA     

   ,2 ,2 1 ,2 2
R R R
k n k n k nA A kA    

Adding all these equations term by term, we get  

,1 ,2 ,3 ,2
R R R R
k k k k nA A A A   

 

,1 ,1 ,2 ,2n 2 ,0 ,2n 1(1 k)(A ) kA AR R R R R R
k k k k k kA A A         

 

,1 ,1 ,2 ,2n

,2n 1 ,2n ,2n 1

1
( ) (1 k)(A )

(1 k)( )

R R R R
k k k k

R R R
k k k

A k A A
k

A A A 

      

   



 

,1 ,2 ,2n ,2n 1 ,2n ,2n 1k(A ) 2 (1 k)( )R R R R R R
k k k k k kA A A A A            

,1 ,2 ,2 ,2 ,2 1 ,2n(A ) 2 ( )R R R R R R
k k k n k n k n kk A A A kA kA           

,1 ,2 ,2 ,2 1 ,2n(A ) 2 ( )R R R R R
k k k n k n kk A A A kA         

,1 ,2 ,3 , ,2 2

1
(A 2)R R R R R

k k k k n k nA A A A
k

       . 

This proves the lemma. 

The following results follow immediately from above two lemmas. 

Lemma 4.6.3 , 2 2(mod m)R
k nA   and ,2 2 2(mod m)R

k nA   . 

We next obtain the formulas for sum of first n associated right k-Fibonacci numbers with 

only odd or even subscripts. 
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Lemma 4.6.4 ,1 ,3 ,5 ,2 1 ,2 2 ,2 1

1
(A 2)

(2 )
R R R R R R
k k k k n k n k nA A A A kA k

k k
         


  

Proof: We have  , , 1 , 2 , 2R R R
k n k n k nA A kA n   

 ,0 ,1

1
, 1R R

k kA A
k

 
 

   ,3 ,2 ,1
R R R
k k kA A kA 

 

   ,5 ,4 ,3
R R R
k k kA A kA 

 

   ,7 ,6 ,5
R R R
k k kA A kA 

 

    

     

   ,2 1 ,2 2 ,2 3
R R R
k n k n k nA A kA       

Adding all these equations term by term, 

,1 ,3 ,5 ,2 1
R R R R
k k k k nA A A A      

,1 ,2 ,4 ,2 2 ,1 ,3 ,2 3(A ) (A )R R R R R R R
k k k k n k k k nA A A k A A            

,1 ,3 ,5 ,2 1 ,1 ,2 ,2 1 ,2

,1 ,3 ,5 ,2 1 ,2 ,2 1

2(A ) 1 (A )

(A )

R R R R R R R R
k k k k n k k k n k n

R R R R R R
k k k k n k n k n

A A A A A A

k A A A A kA

 

 

          

      

 


 

,1 ,3 ,5 ,2 1 ,2 2 ,2 ,2 1

1
(2 )(A ) 1 (A 2)R R R R R R R

k k k k n k n k n k nk A A A A kA
k

              

     ,2 2 ,2 1

1
(A 2)R R

k n k nk A
k

    

,1 ,3 ,5 ,2 1 ,2 2 ,2 1

1
(A 2)

(2 )
R R R R R R
k k k k n k n k nA A A A kA k

k k
          




 

Lemma 4.6.5 2
,2 ,4 ,6 ,2 ,2 2 ,2

1
(A 2)

(2 )
R R R R R R
k k k k n k n k nA A A A k A k

k k
       


  

Proof: We have  , , 1 , 2 , 2R R R
k n k n k nA A kA n   

 ,0 ,1

1
, 1R R

k kA A
k

 
 

   ,2 ,1 ,0
R R R
k k kA A kA 

 

   ,4 ,3 ,2
R R R
k k kA A kA 

 

   ,6 ,5 ,4
R R R
k k kA A kA 

 

    

 

   ,2 ,2 1 ,2 2
R R R
k n k n k nA A kA      

 
Adding all these equations term by term, 
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,2 ,4 ,6 ,2
R R R R
k k k k nA A A A     

,1 ,3 ,2 1 ,0 ,2 ,4 ,2 2(A ) k (A )R R R R R R R
k k k n k k k k nA A A k A A          

,2 ,4 ,2 ,1 ,2 ,2

,2 ,4 ,2 ,2

1
2(A ) (A ) k( )

(A )

R R R R R R
k k k n k k k n

R R R R
k k k n k n

A A A A
k

k A A kA

        

    

 



 

,2 ,4 ,2 ,2n 2 ,2

1
(2 )(A ) (A 2) 1R R R R R

k k k n k k nk A A kA
k

          

    
2

,2 2 ,2

1
(A 2)R R

k n k nk A k
k

     

2
,2 ,4 ,2 ,2 2 ,2

1
(A 2)

(2 )
R R R R R
k k k n k n k nA A A k A k

k k
       


 . 

Now we obtain the value of multiplication of two consecutive associated right k -

Fibonacci numbers. 

Lemma 4.6.6 2 2 2 2 1 2
, , 1 , , 1 , 2 ,1 ,0 ,1

R R R R R n R n R R
k n k n k n k n k n k k kA A A kA k A k A k A A

         

1 2
,r

2

2
n

n n r R
k

r

k k A 



  .   . 

Proof: We have , , 1 , 2
R R R
k n k n k nA A kA    and , 1 , , 1

R R R
k n k n k nA A kA    

Now 
2

, , 1 , , , 1 , , 1 , 1 , 2(A ) (A )R R R R R R R R R
k n k n k n k n k n k n k n k n k nA A A kA A kA kA          

2 2 2
, , 1 , 2 , 2 , 3k (A )R R R R R

k n k n k n k n k nA kA A kA        

2 2 2 2 3
, , 1 , 2 , 3 , 3 , 4k k (A )R R R R R R

k n k n k n k n k n k nA kA A A kA        

 
2 2 2 2 1

, , 1 , 2 ,1 ,1 ,0k (A )R R R n R R R
k n k n k n k k kA kA A k A A

      

 
2 2 2 2 2 2 1 2

, , 1 , 2 ,2 ,1 ,1 ,0kR R R n R n R n R R
k n k n k n k k k kA kA A k F k A k A A 

       

 
2 2 2 2 2 2 1 2

, , 1 , 2 ,2
1k (1) (1)( )R R R n R n n

k n k n k n kA kA A k F k k
k

 
       

 
1 2

,r
2

2
n

n n r R
k

r

k k A 



  . 

We now derive reduction formula for ,
R
k nA .   

Lemma 4.6.7 , , 1 , , , 1 , 1
R R R R R R
k m n k m k n k m k n k m nA kA A A A A        

Proof: Let mbe fixed and we will proceed by inducting on n . 
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 Also we know value ,0 ,1 ,2

1
, 1, 2R R R

k k kA A A
k

    

 Take 0n  . Then ,m 1 ,0 ,m ,1 ,m 1 ,m
R R R R R R
k k k k k kRHS kA A A A A A      

 When 1n  , we have   

 ,m 1 ,m 1 ,1 ,m ,2 ,m
R R R R R R
k k k k k kA kA A A A A     ,m 1 ,m ,m 1

R R R
k k kA A kA   

 
  

 This is obviously true. 

Now let us assume that the result is true for positive integers 1, 2,3, ,n t   

  ,m ,m 1 , ,m , 1 ,m t 1
R R R R R R
k t k k t k k t kA kA A A A A       and     

  ,m ( 1) ,m 1 , 1 ,m , ,m t 2
R R R R R R
k t k k t k k t kA kA A A A A       

 
    

We will show that it holds for 1n t  . Now from above two equations , we have  

,m , ( 1) ,m 1 , , 1 , , 1 ,

,m t 1 ,m t 2

(A ) (A )

( )

R R R R R R R R
k t k m t k k t k t k m k t k t

R R
k k

A kA kA kA A kA

A kA

     

   

    

 
 

,m 1 , 1 ,m , 2 ,m t
R R R R R
k k t k k t kkA A A A A       

,m 1 , 1 ,m ,( 1) 1 ,m (t 1) 1
R R R R R
k k t k k t kkA A A A A         ,m ( 1)

R
k tA   . 

This is true for 1n t  . This proves the lemma. 

It is often useful to extend the sequence of associated right k- Fibonacci numbers 

backward with negative subscripts. In fact if we try to extend the associated right k- Fibonacci 

sequence backward still keeping to the same rule, we get the following: 

n       ,n
R
kA    

  -1             
2

1 k

k


  

  -2                                                                   
3

1

k
 

  -3         
2

4

1 k k

k

 
  

  -4         
2

5

1 2k k

k

 
 

  -5       
3

6

1 3k k

k
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Such associated right k- Fibonacci sequence can be extended infinitely in both directions 

is called Bilateral. 

We next prove the divisibility property for ,n
R
kA . 

Lemma 4.6.8 , ,
R R
k m k m nA    for all integers ,m n . 

Proof: Let m  be fixed and we will proceed by inducting on n . 

 If either m  or n  equal to zero, then the result is true. 

 Let for 1n  , it is clear that , ,
R R
k m k mA   . 

  The result is true for 1n  . 

Assume that the result is true for 1, 2,3,n t   

Thus , ,
R R
k m k mtA   holds by assumption. 

To prove the result is true for 1n t  . Now using lemma 4.6.7, we get 

, ( 1) ,
R R
k m t k mt mA A  , 1 , , , 1 , 1

R R R R R
k mt k m k mt k m k mt mkA A A A A     

  , 1 , , , 1 , 1 , 1 , , , 2
R R R R R R R R R
k mt k m k mt k m k mt k m k mt k m k mt mkA A A A kA A A A A           

Continuing this process, Since by assumption ,
R
k mA divides the entire right side of the equation.  

 Hence , , ( 1)
R R
k m k m tA   . This proves the result for 1n  . 

We next establish the relation for sum of squares consecutive associated right k-

Fibonacci numbers. 

Lemma 4.6.9 2 2
, , 1 ,2 1 ,2

1 1
( )R R R R

k n k n k n k nA A A A
k k

    .  

Proof: We prove this result by the principal of mathematical induction. 

For 1n  , we have  

2 2
,1 ,2 ,3 ,2

1 1 1 1
1 (4) ( 4) ( )R R R R

k k k kLHS A A k A A RHS
k k k k

         .       

This proves the result for 1n  . 

We assume that it is true for all integers up to some positive integer ‘t’.   

2 2
, , 1 ,2 1 ,2

1 1
( )R R R R

k t k t k t k tA A A A
k k

    
 
holds by assumption.  

Now 2 2 2 2
, 1 , 2 , 1 , 1 ,

1 1
( )R R R R R

k t k t k t k t k tA A A A kA
k k
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2 2 2 2
, 1 , 1 , , 1 ,

1
( 2 )R R R R R

k t k t k t k t k tA A kA A k A
k

     

 

2 2 2
, 1 ,t , 1 , , 1 , , 1

1
( )R R R R R R R

k t k k t k t k t k t k tA kA A kA A kA A
k

       

 

2 2
, , 1 , 1 , 1 , , , 1

1 1
( ) [ ( ) ]R R R R R R R

k t k t k t k t k t k t k tk A A A A kA kA A
k k

       

 
,2 1 ,2 , 1 , 2 , , 1

1 1
( ) [ ]R R L L L L

k t k t k t k t k t k tk A A A A kA A
k k

      

 
,2 1 ,2 , , 1 , 1 , 2

1
(k )R R R R R R

k t k t k t k t k t k tA A A A A A
k

        

Since from lemma 4.6.7 

2 2
, 1 , 2 ,2 1 ,2 , 1 1 , 1 1 1

1 1
( )R R R R R R

k t k t k t k t k t t k t tA A A A A A
k k

                

,2 2 ,2 1 ,2 1 ,2

1
( )R R R R

k t k t k t k tA kA A kA
k

       

 ,2 3 ,2 2 ,2( 1) 1 ,2( 1)

1 1
( ) ( )R R R R

k t k t k t k tA A A A
k k

         

This proves the result by induction. 

We finally prove the analogous of one of the oldest identities involving the Fibonacci 

numbers – Cassini’s identity, which was discovered in 1680 by a French astronomer Jean- 

Dominique Cassini. 

Lemma 4.6.10 2 2
, 1 , 1 ,.A ( ) ( 2)R R R n

k n k n k nA A k k
      . 

Proof: 2 2
, 1 , 1 , , , 1 , 1 ,.A (A ) AR R R R R R R

k n k n k n k n k n k n k nA A kA A        

    2 2
, , 1 , , 1

R R R R
k n k n k n k nA A A kA     

    2
, , 1 , , 1(A )R R R R

k n k n k n k nA A kA     

    2
, , 2 , 1( )R R R

k n k n k nA kA kA     

    2
, , 2 , 1(A )R R R

k n k n k nk A A        

We can repeat the above process on the right side. 

 2 1 2
, 1 , 1 , , , 2 , 1.A ( ) (A .A )R R R R R R

k n k n k n k n k n k nA A k A        

   2 2
, 1 , 3 , 2( ) (A .A )R R R

k n k n k nk A      
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   2
,1 , 1 ,0( ) (A .A )n R R R

k k kk A    

   
2

2 2

1 1
( ) (1. ) ( ) ( 2)n nk

k k k
k k


       

Since we have ,1 ,0 , 1 2

1 1
1, ,R R R

k k k

k
A A A

k k



      

2 2
, 1 , 1 ,.A ( ) ( 2)R R R n

k n k n k nA A k k
      . 

Lemma 4.6.11 
2

, ,
0

1 ; 2
n

R R
k n k i

i

A k A n




   . 

Proof: We prove this result by the principal of mathematical induction. 

For 2n  , we have 
,2 ,0

1
2 1 1R R

k kLHS A k kA RHS
k

 
       

 
.  

This proves the result for 2n  . 

We assume that it is true for all integers up to some positive integer ‘t’.  

Thus 
2

, ,
0

1 ; 2
t

R R
k t k i

i

A k A t




   , holds by assumption. 

Now we consider the right side of the result to be proved for 1n t  . 

 
1

, ,0 ,1 ,2 ,t 1
0

1 1
t

R R R R R
k i k k k k

i

RHS k A k A A A A





         

,1 ,0 ,1 ,2 ,t 1( )R R R R R
k k k k kA kA k A A A       

,2 ,1 ,2 ,3 , 1( )R R R R R
k k k k k tA kA k A A A        

,3 ,2 ,3 ,4 , 1( )R R R R R
k k k k k tA kA k A A A       . 

Continuing this process on right hand side, we get  

 , , 1 , 1
R R R

k t k t k tRHS F kF F LHS       

 The result is true for 1n t  . This proves the result by induction. 

Lemma 4.6.12  , , 1gcd , 1, 0,1,2,3,...R R
k n k nA A n     

Proof: Suppose that ,
R
k nA  and , 1

R
k nA  are both divisible by a positive integer d. 

Then clearly , 1 , , , 1 , , 1
R R R R R R
k n k n k n k n k n k nA A A kA A kA        

will also be divisible by d. Then right hand side of this result is divisible by d. 



Page | 60 
 

This gives , 1/ R
k nd kA  . 

First we claim that ,
R
k nA  is always relatively prime to k. 

From the lemma 4.6.11, we have
2

, ,
0

1 ; 2
n

R R
k n k i

i

A k A n




   .   

If some integer ' 1d  is divisor of both ,
R
k nA and k, then from above result it is clear that 'd   

must divide 1, a contradiction. Thus ,
R
k nA  is always relatively prime to k ,n 1

R
kd     .     

Continuing this argument we see that , 2 , 3,R R
k n k nd d      and so on. Eventually, we must 

have ,1
R
kd   . Since ,1 1R

kA  we get 1d  , this proves the required result. 

4.7 Generating function of associated right k- Fibonacci numbers: 

Lemma 4.7.1 The generating function for the generalized associated right k- Fibonacci 

sequence , 0

R
k n n

A



 is given by 

2

1 ( 1)
( )

(1 )

k x
f x

k x kx

 


 
 . 

Proof: We begin with the formal power series representation of generating function for ,
R
k nA  

that is for  ng  . 

2
, 0 1 2

0 0

( ) R m m
k m m

m m

f x A x g x g g x g x
 

 

         

2 3 4
1 0 2 1 3 2

1
(1) ( ) ( ) ( )x g kg x g kg x g kg x

k
          

2 2 2
1 2 0 1 2

1
( ) ( )x x g x g x kx g g x g x

k
           

2 2 2
0 1 2 0 1 2

1
( ) ( )

x
x x g g x g x kx g g x g x

k k
             

21
( ) ( )

kx x
xf x kx f x

k k


     

2

2

1 1 ( 1)
(1 ) ( ) ( )

(1 )

kx x k x
x kx f x f x

k k k x kx

  
      

 
. 

This is the generating function for the generalized associated right k- Fibonacci sequence 

 , 0

R
k n n

A



. 



Chapter- 5 
 

 

Golden proportions for the 

Generalized  

left and right k-Fibonacci 

numbers 
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It is known fact that the ratios of consecutive terms of Fibonacci sequence converges to 

the fixed ratio [12, 43]. In this chapter we consider the further generalization of recursive 

formula of k-Fibonacci numbers. We derive the ‘golden proportion’ for the whole family of this 

new generalized sequence. 

5.1 Introduction: 

It is well-known that the ratio of consecutive terms of a Fibonacci sequence converges to 

Golden ratio 
1 5

2



  which is the positive root of the equation 2 1 0x x   . 

Stakhov [39, 41] defined the p Fibonacci numbers (n)pF  by the recurrence relation 

1 ;1 1
( )

( 1) ( 1) ; 1
p

p p

n p
F n

F n F n p n p

  
 

     

; 

where 1, 2,3,n    

It can be seen that by taking 1p  , the recurrence relation becomes

     1 2 , 2F n F n F n n     ; (1) (2) 1F F  , which is a well known Fibonacci sequence. 

The values of ( )pF n  for 1, 2,....,5p   and for first 15 values of n are shown below for the ready 

reference. 

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

F1(n) 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 

F2(n) 1 1 1 2 3 4 6 9 13 19 28 41 60 88 129 

F3(n) 1 1 1 1 2 3 4 5 7 10 14 19 26 36 50 

F4(n) 1 1 1 1 1 2 3 4 5 6 8 11 15 20 26 

F5(n) 
 

1 1 1 1 1 1 2 3 4 5 6 7 9 12 16 

[Table 1: Values of  pF n ] 

 Stakhov also shown that  pF n satisfies p

p

p

F (n)lim

n F (n 1)
 

 
, where the golden p-

proportion p  is the root of 1 1p px x   . 

De Villiers [9] generalized the recursive formula to 1n t n t nF F F    ,  where

1, 2, 3, ...t  ; and made the interesting discovery that for each member of this family, the ratios 
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of consecutive terms converge to the positive roots of 
1 1 0t tx x    .  

However, based on the assumption that 1lim n t

x
n t

F

F
 




 exists, only a partial proof to this 

result was given. He suggested a simple proof for the case where k is even. 

 

Later Falcon [14] considered the same problem and provided the complete proof of the 

problem. In this chapter we generalize the above recurrence relation and consider the problem of 

finding the ‘golden proportion’ for the particular family of this generalized sequence. 

5.2 Some preliminaries of left k- Fibonacci numbers: 

  First we consider the particular generalization of recursive formula of ,
L

k nF as

1
G kG Gnn an a

  
; where a is any positive integer. Clearly ,

L
n k nG F when 0 10, 1G G  .If 

we consider the left k-Fibonacci numbers for the case 2, 3k  , … then we observe that ratio of 

consecutive left k-Fibonacci numbers converge to a fixed ratio. This fact is presented in the 

following table for 2,3k  : 

n 2,nG  
2, 1

2,

n

n

G

G

  3,nG

 
3, 1

3,

n

n

G

G



 

0 0  0  

1 1 2 1 3 

2 2 2.5 3 3.33 

3 5 2.4 10 3.3 

4 12 2.416 33 3.3030 

5 29 2.413793103 109 3.302752 

6 70 2.414285714 360 3.30277 

7 169 2.414201183 1189 3.302775 

8 408 2.414215686 3927 3.302775 

9 985 2.414213198 12970 3.302775 

10 2378 2.414213625 42837 3.302775 

11 5741 2.414213557 141481 3.302775 

[Table 2: Values of Ratio] 



Page | 63 
 

We consider the more generalized recurrence relation given by 1G kG Gnn an a    ; 

where a is any positive integer. By substituting n for 1n a  , this recurrence relation becomes 

                      1 1n n n aG kG G         (5.2.1) 

This is a difference equation with characteristic equation 1n n t n ax kx x    . 

This is same as 

                   
1 1a ax kx   .                                         (5.2.2) 

We write it as ( ) 1ax x k  , which implies
1ax

x k



. 

Thus solving (5.2.2) is equivalent to solving the system  

                                     

1
( ) ; ( ) af x g x x

x k
 


                                        (5.2.3) 

This is same as finding intersection of these curves defined for 1, 2,3,...a  We now 

consider the different cases when a is even or odd.  

 If a is even, the graph of ( ) ag x x is a parabolic type curve. In this case, the intersection of 

two curves of (5.2.3) is shown in figures 1 and 2.  

 Also if a is odd, the graph of ( ) ag x x is a curve of cubic type. In this case, the intersection 

of two curves of (5.2.3) is shown in figures 3 and 4. 
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Figure-1 [a even, k even]  

Figure-2 [a even, k odd]      
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Figure-3 [a odd, k even] 
 

Figure-4 [a is odd, k odd] 
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It is clear from these figures that when a is even, both ( )f x and ( )g x are symmetric about 

the y-axis. In this case, system (5.2.3) has one real roots x M ; for some real number M such 

that, M k . 

Also when a is odd, system (5.2.3) has two real roots 1,x M M  , where 10 1M    and 

M k . 

We summarize this in the following table. 

a k 
Number of 

Intersecting 

     Points 

                        Roots 

Even Even 1 ;x M M k   

Even Odd 1 ;x M M k   

Odd Even 2 1 1, ; 0 1, M kx M M M      

Odd Odd 2 1 1, ; 0 1, M kx M M M      

 
[Table 3: Values of Roots] 

In short: The roots of (5.2.3) are 

(a) One positive real number M, where M k . 

(b) One real number –M1, where 10 1M  ; when a is odd. 

At this point we note that total numbers of roots of (5.2.2) are 1a  .                 

 The roots of (5.2.2) other than above are simple complex numbers z whose modulus is 

always less than M. 

 We express these a (or 1a  , as the case may be) complex roots in exponent form as

ji

j jz r e


 ;  where 2 2
j j jr a b  , and 1tan j

j

j

b

a
   
  

   

. 

Also  jr M ; for all 1, 2,3,...,j a (or 1a  ). 

In this chapter we prove that 
lim

; 1, 2, 3,tn a t

n a

G
M t

n G
 



 


 for some real number

M k . 
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5.3 The main result for left k- Fibonacci numbers: 

Before we prove the main result, we first prove some intermediate results which when 

combined will give the main result. 

Throughout we consider t to be any fixed positive integer; a is any integer; M k and

10 1M  . 

Lemma 5.3.1 When a is even, 
lim

; 1, 2, 3,tn a t

n a

G
M t

n G
 



 


 . 

Proof: In this case the characteristic equation (5.2.2) of difference (5.2.1) has one real root M such 

that M k . 

 Taking into account the above discussion, by the theory of equations [13], we can say that 

solution of the difference equation (5.2.1) is of the type 

1

1
2

a
n n

n j j
j

G a M a z




  . 

Now,
lim lim

n a t n

n a n t

G G

n nG G
 

 


   

 

1

1
2

1

1
2

lim

a
n n

j j
j

a
n t n t

j j
j

a M a z

n
a M a z






 














 
1

1
2

1

1
2

lim

1 1

n
a

j

j
j

n t
a

j

jt t
j

z
a a

M

n z
a a

M M M










 
  

 
     

     
    




 

1

1
2

1
( )

1
2

lim

1 1

j

j

n
a

i nj

j
j

n t
a

i n kj

jt t
j

r
a a e

M

n r
a a e

M M M
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Since, jr M , for all 1, 2,3,... 1j a  ,
lim

0

n

jr

n M

 
 

 
and 

lim
0

n t

jr

n M


 

 
 

. 

Thus, 1

1

lim

1
tn a t

n a
t

G a
M

n G
a

M

 



 
  

 
 

, which proves the result. 

Lemma 5.3.2 When a is odd, 
lim

; 1, 2, 3,tn a t

n a

G
M t

n G
 



 


  . 

Proof: When a is odd, it is observed that the characteristic equation (5.2.2)  

has two real roots M and 1M such that M k and 10 1M  . 

Thus we write the solution of (5.2.2) as 
1

1 2 1
3

( )
a

n n n
n j j

j

G a M a M a z




    .  

Now,
lim lim

n a t n

n a n t

G G

n nG G
 

 


   

 

1

1 2 1
3

1

1 2 1
3

( )
lim

( )

a
n n n

j j
j

a
n t n t n t

j j
j

a M a M a z

n
a M a M a z






  



  




  





 

1
1

1 2
3

1
1

1 2
3

lim

1 1 1

nn a
j

j
j

n tn t a
j

jt t t
j

zM
a a a

M M

n zM
a a a

M M M M M





 



  
    

   
        

         
        




 

1
1

1 2
3

1
( )1

1 2
3

lim

1 1 1

j

j

nn a
inj

j
j

n tn t a
i n kj

jt t t
j

rM
a a a e

M M

n rM
a a a e

M M M M M









 




  
    

   
        

         
        




 

Since, jr M , for all 3, 4,5,..., a 1j   , 
lim

0

n

jr

n M

 
 

 
and 

lim
0

n t

jr

n M


 

 
 

. 

Also since 10 1M  and M k , we have 11 0
M

M


   and 10 1

M

M
  .  
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This implies 1
lim

0
n

M

n M

 
 

 
and 1

lim
0

n t
M

n M


 

 
 

.   

Thus, 1

1

lim

1
tn a t

n a
t

G a
M

n G
a

M

 



 
  

 
 

. 

Corollary 5.3.3 For the sequence , 1k n n
G




of Fibonacci numbers we have

1
lim 1 5

.
2

n

n

G

n G
 

 


 

Proof: By considering 1a  in (5.2.1) we get the sequence of Fibonacci numbers. 

Now by considering 1t  in lemma 5.3.2, we have 2

1

lim n

n
n

G
M

G





 , 

where M is the root of (5.2.2). Clearly, 
1 5

2
x 


  is the root of 2 1x x  . 

This proves the corollary. 

5.4 Some preliminaries of right k- Fibonacci numbers: 

In this part of the chapter, we consider another interesting generalization of recursive 

formula of ,
R

k nF
 
as 1H H kHnn an a    ; where a is any positive integer. Clearly ,

R
n k nH F

when 0 10, 1H H  . 

If we consider the right k-Fibonacci numbers for the case 2, 3k  ,… then we observe that 

ratio of consecutive right k-Fibonacci numbers converge to a fixed ratio. This fact is presented in 

the following table for 2,3k  : 

n 2,nH  
2, 1

2,

n

n

H

H

  
3,nH

 

3, 1

3,

n

n

H

H



 

0 0  0  

1 1 1 1 1 

2 1 3 1 4 

3 3 1.6666 4 1.75 
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4 5 2.2 7 2.714285 

5 11 1.90909 19 2.105263 

6 21 2.047619 40 2.425 

7 43 1.976744186 97 2.237113 

8 85 2.011764706 217 2.341014 

9 171 1.99415204 508 2.281496 

10 341 2.002932551 1159 2.3149266 

11 683 1.998535871 2683 2.2959374 

12 1365 2.000732601 6160 2.30665585 

13 2731 1.999633834 14209 2.3005841 

14 5461  32689  

[Table 4: Values of Ratio] 

Here we consider the more generalized recurrence relation
1

H H kHnn an a
  

; where 

a is any positive integers. 

By substituting n for 1n a  , this recurrence relation becomes 

                                        1 1n n n aH H kH                            (5.4.1) 

This is a difference equation with characteristic equation 
n n b n a bx x kx    . 

This is same as                     
1a ax x k   .             (5.4.2) 

We write it as ( 1)ax x k  , which implies 
1

a k
x

x



. 

Thus solving (5.2.2) is equivalent to solving the system  

                                       
( ) ; ( )

1
ak

f x g x x
x

 


            (5.4.3) 

This is same as finding intersection of these curves defined for 1, 2,3,...a   

 We now consider the different cases when a is even or odd. 

If a is even, the graph of ( ) ag x x  is a parabolic type curve. In this case, the intersection 

of two curves of (5.4.3) is shown in figures 5 and 6. 

 Also if a is odd, the graph of ( ) ag x x  is a curve of cubic type. In this case, the 

intersection of two curves of (5.4.3) is shown in figures 7 and 8. 
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FigureFigure: 5 [a is even, k even]                              
 
 

Figure: 6 [a is even, k odd] 

 
even]                               
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FigureFigure: 7 [a is odd, k even]          

Figure: 8 [a is odd, k odd]                              

 

 

odd]                               
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It is clear from these figures that when a is even both ( )f x and ( )g x  are symmetric about 

the y-axis. In this case, system (5.4.3) has one real root x M ; for some real number M such 

that, 1M  .When a is odd, system (5.4.3) has two real roots 1,x M M  , where 1 1M M  . 

We summarize this in the following table. 

a k 

Number of  

intersecting 

Points 
Roots 

Even Even 1 ; 1x M M   

Even Odd 1 ; 1x M M   

Odd Even 2 1 1, ; 1x M M M M     

Odd Odd 2 1 1, ; 1x M M M M     

[Table 5: Values of Roots] 

In short: The roots of (5.4.3) are 

(a) One positive real number M, where  1M  . 

(b) One real number –M1, where 1 1M M  ; when a is odd.  

At this point we note that total numbers of roots of (5.4.3) are 1a  .                 

The roots of (5.4.2) other than above are simple complex numbers z whose modulus is always less 

than M. 

We express these a (or 1a  , as the case may be) complex roots in exponent form as 

ji

j jz r e


 ;  where 2 2
j j jr a b  , and 1tan j

j

j

b

a
   
  

 
and also jr M ; for all 1, 2,3,...,j a  (or

1a  ). 

In fact we prove that
lim

; 1, 2, 3,tn a t

n a

G
M t

n G
 



 


 ; for some real number 1M  . 

5.5. The main result for right k-Fibonacci numbers: 

Before we prove the main result, we first prove some intermediate results which when 

combined will give the main result. 
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Throughout we consider t to be any fixed positive integer; a is any integer; 1M  and 

1 1M M  . 

Lemma 5.5.1 When a is even, 
lim

; 1, 2, 3,tn a t

n a

H
M t

n H
 



 


 . 

Proof: Since a is even, the characteristic equation (5.4.2) of difference (5.4.1) has one real root M 

such that 1M  . 

Taking into account the above discussion, by the theory of equations [13] we can say that 

solution of the difference equation (5.4.1) is as under: 

1

1
2

a
n n

n j j
j

H a M a z




  . 

Now,
lim lim

n a t n

n a n t

H H

n nH H
 

 


   

1

1
2

1

1
2

lim

a
n n

j j
j

a
n t n t

j j
j

a M a z

n
a M a z






 














 
1

1
2

1

1
2

lim

1 1

n
a

j

j
j

n t
a

j

jt t
j

z
a a

M

n z
a a

M M M










 
  

 
     

     
    




 

1

1
2

1
( )

1
2

lim

1 1

j

j

n
a

i nj

j
j

n t
a

i n kj

jt t
j

r
a a e

M

n r
a a e

M M M
















 
  

 
     

     
    




 

Since, jr M , for all 1, 2,3,... 1j a  ,  
lim

0

n

jr

n M

 
 

 
and 

lim
0

n t

jr

n M


 

 
 

. 

Thus, 1

1

lim

1
tn a t

n a
t

H a
M

n H
a

M

 



 
  

 
 

, which proves the result.   
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Lemma 5.5.2 When a is odd ,
lim

; 1, 2, 3,tn a t

n a

H
M t

n H
 



 


 . 

Proof: When a is odd. It is seen that the characteristic equation (5.4.2) has two real roots M and

1M such that 1 1M M  . 

Thus we write the solution of (5.2.2) as 
1

1 2 1
3

( )
a

n n n
n j j

j

H a M a M a z




    .  

Now,
lim lim

n a t n

n a n t

H H

n nH H
 

 


 

 

1

1 2 1
3

1

1 2 1
3

( )
lim

( )

a
n n n

j j
j

a
n t n t n t

j j
j

a M a M a z

n
a M a M a z






  



  




  





1
1

1 2
3

1
1

1 2
3

lim

1 1 1

nn a
j

j
j

n tn t a
j

jt t t
j

zM
a a a

M M

n zM
a a a

M M M M M





 



  
    

   
        

         
        





1
1

1 2
3

1
( )1

1 2
3

lim

1 1 1

j

j

nn a
inj

j
j

n tn t a
i n kj

jt t t
j

rM
a a a e

M M

n rM
a a a e

M M M M M









 




  
    

   
        

         
        




. 

Since, jr M , for all 3, 4,5,..., a 1j   , 
lim

0

n

jr

n M

 
 

 
and 

lim
0

n t

jr

n M


 

 
 

. 

Also since 1 1M M  , we have 11 0
M

M


   and 10 1

M

M
  .  

This implies 1
lim

0
n

M

n M

 
 

 
and 1

lim
0

n t
M

n M


 

 
 

.   

Thus, 1

1

lim

1
tn a t

n a
t

H a
M

n H
a

M

 



 
  

 
 

.  

It is now mere a formality to state the main result of this chapter. 
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Corollary5.5.3 For the sequence  , 1k n n
H




 of Fibonacci numbers we have

1
lim 1 5

.
2

n

n

H

n H
 

 


 

Proof: By considering 1a  in (5.4.1) we get the sequence of Fibonacci numbers. 

Now by considering 1t  in lemma 5.5.2, we have  2

1

lim n

n
n

H
M

H





 , where M is the root of (5.4.2). 

Clearly, 
1 5

2
x 


   is the root of 2 1x x  . 

This proves the corollary.   

Scope:  

If we consider the more generalized recurrence relations as n b n a nG kG G   and 

n b n a nH H kH   ; where ,a b  are positive integers such that b a  , then there are three real 

parameters ,a b and k  which are to be considered. In this case also we can find the corresponding 

‘golden proportion’ for the whole class of generalized Fibonacci sequence. There is a great scope 

of work possible in this case.  

 

Conclusions: 

New generalized k- Fibonacci and associated k- Fibonacci sequences has been introduced 

and deducted their identities and results.   
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Appendix-I 

 

Computer Program to obtain terms of left k- Fibonacci sequence  nF  is 

presented here using the programming language MATLAB (R2008a). 

 

clear all 

clc 

syms k; 

f0 = 0; f1 = 1; 

n = input('Enter the number of terms:'); 

disp(['F0',' = ',num2str(f0)]);  

disp(['F1',' = ',num2str(f1)]); 

for i=2:n 

    F = k*f1 + f0; 

Fn = expand(F); 

disp(['F',num2str(i),' = ',char(Fn)]); 

    f0=f1; f1 = Fn;      

end 
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Appendix-II 

Computer Program to obtain terms of right k- Fibonacci sequence nG is 

presented here using the programming language MATLAB (R2008a). 

 

clear all 

clc 

syms k; 

G0 = 0; G1 = 1; 

n = input('Enter the number of terms:'); 

disp(['G0',' = ',num2str(G0)]);  

disp(['G1',' = ',num2str(G1)]); 

for i=2:n 

    G = G1 + k*G0; 

Gn = expand(G); 

disp(['G',num2str(i),' = ',char(Gn)]); 

    G0=G1; G1 = Gn;      

end 
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Appendix-III 

 

Computer Program to obtain terms of associated left k- Fibonacci sequence 

 nA  is presented here using the programming language MATLAB (R2008a). 

 

clear all 

clc 

syms k; 

A0 = 1; A1 = 1; 

n = input('Enter the number of terms:'); 

disp(['A0',' = ',num2str(A0)]);  

disp(['A1',' = ',num2str(A1)]); 

for i=2:n 

    A = k*A1 + A0; 

    An = expand(A); 

disp(['A',num2str(i),' = ',char(An)]); 

    A0=A1; A1 = An;      

end 
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Appendix-IV 

Computer Program to obtain terms of associated right k- Fibonacci 

sequence  nB  is presented here using the programming language MATLAB 

(R2008a). 

 

clear all 

clc 

syms k; 

B0 = 1/k; B1 = 1; 

n = input('Enter the number of terms:'); 

disp(['B0',' = ',char(B0)]);  

disp(['B1',' = ',num2str(B1)]); 

for i=2:n 

    B = B1 + k*B0; 

Bn = expand(B); 

disp(['B',num2str(i),' = ',char(Bn)]); 

    B0=B1; B1 = Bn;      

End 
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