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The subject matter of the topic is connected with the study of some aspects of
generalization of Fibonacci numbers. The aim of the Research Project is to study various
properties of the family of generalized Fibonacci numbers.

In this chapter we present the fundamental symbols, definitions, known facts and some
preliminary results from the Theory of Numbers and also results connected with elementary
properties pursue the essence of the chapters of this research work. The notations and concepts
presented here will be used throughout the research work without any further explanation. The
proof of some known results mentioned here can be found in Burton [6], Dickson [10], Apostol

[2] or any book of elementary Number Theory.

Throughout the thesis, the notationsZ and H stands for the usual “summation” and
“product” respectively, where the range will be indicated explicitly there. Also by “induction”
we mean the usual process of mathematical induction.

1.1 Preliminaries and Notations:
1.1.1 The Divisibility relation:

An integer a is said to be divisible by an integerb # 0, in symbolsb/a, if there exists
some integer ¢ such thata = bc . In this case we may also say b divides a, b is a factor of a, a is
divisible by b or a is a multiple of b. If b is not a factor of a then we write b t a.

Divisibility properties: Let a, b, ¢, s and ¢ be any integers. Then
(i) If a/b and b/c,then a/c.

(i) If a/b and a/c,then a/(sb+tc).

(i) If a/b, then a/bc.

(iv)Ifa/band c/d,then ac/bd .

1.1.2 The Greatest Common Divisor:

If ¢c/a and c¢/b, then we say that ¢ is a common divisor of a and b. The greatest
common divisor (gcd) of two positive integers a and b is the largest positive integer that divides

both @ and b and it is denoted by gcd(a,b) .

Symbolically, we say that a positive integer d is the gcd of two positive integers a and b
if (i) d/a,d/b and (i1) if ¢/a, c/b then c/d .
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Relatively Prime Integers:

Two positive integers a and b are said to be relatively prime if ged(a,b)=1.

An interesting and useful property of gcd is that if ged(a,b) =d then ged (%,gj =1.

Euclid proved that if gcd(a,b) =1 and if a/bc, thena/c.
1.1.3 The Least Common Multiple:

If a/c and b/ c then we say that ¢ is a common multiple of a and b. The least common
multiple (Icm) of two positive integers a and b is the smallest positive integer which is divisible

by both a and b; it is denoted by lem[a,b].

Symbolically, a positive integer m is the lcm of two positive integers a and b if (i)
a/m,b/m and (ii) ifa/n, b/n then m/n.

We note that gcd (a,b) xlcm[a,b] = axb always holds.
1.1.4 Congruencies:

Let m be a fixed positive integer. An integer a is congruent to an integer » modulo m if
m/(a—>b). In symbols we write a = h(mod m) .

Here m is said to be modulus of the congruence relation. If a is not congruent to b
modulo m then we write a # b(mod m).

Throughout we assume that all moduli (plural of modulus) are positive integers.

The following properties of congruence always hold:

(1) @ =b(modm) if and only if a =b+ mk for some integer k.

(2) a = a(modm). [Reflexive property]

(3) If a =b(mod m) then b = a(modm) . [Symmetric property]

(4) If a=b(modm) and b =c(modm) then a =c(modm). [Transitive property]
(5) If a =b(modm) then a and b leave the same remainder when divided by m.

(6) Ifa = r(mod m) where 0 <r <m then r is the remainder when a is divided by m

and conversely.

By this result it is clear that every integer a is congruent to its remainder » modulo m. Here r is

said to be least residue (or residue) of a(mod m) . Since r has exactly m choices 0, 1, 2, 3....(m—1)
we have the following:
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(1) Every integer is congruent (mod m) to exactly one of the least residues
0,1,2,3... (m—1).
(11) If @ =b(modm) and ¢ =d(modm), then a+c=b+d(modm) and
ac = bd(mod m) .
With suitable precautions, cancellation can also be allowed, as seen from the following
useful result:
(i) If ca = ch(mod m) then a = b(modm/d) , whered = ged(c,m) .
Congruence of two integers with different moduli can be combined in to a single

congruence as the next result shows.

(i1) Ifa =b(modm,), a =b(modm,),..., a=b(modm, )thena = b(mod[m,,m,,m,,...,m ]); where
[m,,m,,m;,...m_]is the lcm of m ,m,,m;,...,m_.If they are pair wise relatively prime then this
congruence becomes a = b(mod mm,m;...m.) .

1.1.5 Complete System of Residues:

Any set of m integersa,,a,,a,,...,a, s said to form Complete Residue System (CRS)
modulo m if every integer is congruent (modm) to exactly one @, . In other words, if
a,,a,,a;,...,a, are congruent modulo m to 0, 1, 2, 3...(m—1)in some order, then we say that

a,,a,,d,,...,a, constitute CRS (modm).

1.1.6 The Fundamental Theorem of Arithmetic:

Prime numbers are the building blocks of all the integers. Every integer can be
decomposed into primes. Before we state this cornerstone result of Theory of Numbers, we need
to state the following results:

(1) (Euclid): If pisaprime and p/ab ,thenp/a or p/b.

(1) If pis a prime and p/aa,...a,,then p/a, for some i, where 1<i<n.
We can now state the most fundamental result in Number Theory.
Theorem (The Fundamental Theorem of Arithmetic):

Every positive integer n>2 is either a prime or can be expressed as a product of primes.

The factorization into primes is unique except for the order of the factors.
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A factorization of a composite number 7z in terms of primes is a prime factorization of n.

Using the exponential notation, this product can be rewritten in a compact way as
n=p“p,”.p“;where p,p,,.., p, are distinct primes with p, < p, <...< p, and each ¢, is a
positive integer. This is said to be prime power representation of n. We can represent this
product asn = H po.

We also note that if p/ab and gcd(p,a) =1 then p/b.

1.1.7 The Greatest Integer Function:

For an arbitrary real number x, we denote by [x] the largest integer less than or equal to
x; i.e.[x] is the unique integer satisfying x—1<[x]<x.
Sometimes [x] is also denoted by I_xJ . This function is also known as Floor function.

1.1.8 A Generating Function:

The ordinary generating function f (x) for the infinite sequence {ao,al,az,...} is a power

series f (x)zZanx” . Normally the term generating function is used to mean ordinary

generating function.

Here we usually regard x as a place holder rather than a number. Only in a rare cases x is
regarded as a real number. Thus while actually evaluating a generating function, we can largely
forget about questions of convergence.

1.1.9 Fermat’s Theorem:
The following theorem also known as Fermat’s “Little” theorem is an important result in

the Theory of Numbers.
Theorem: If p is a prime and ged(p,a)=1 thena”™ =1(mod p).

1.2 Introduction to Fibonacci Numbers:

Fibonacci was born in Pisa-Italy around 1170. Around 1192 his father, Guillielmo
Bonacci, became director of the Pisan trading colony in Bugia-Algeria, and some time thereafter

they traveled together to Bugia. From there Fibonacci traveled throughout Egypt, Syria, Greece,

Page | 4



Sicily and Provence where he became familiar with Hindu-Arabic numerals which at that time
had not been introduced into Europe.

He returned to Pisa around 1200 and produced Liber Abaci in 1202. In it he presented
some of the arithmetic and algebra he encountered in his travels, and he introduced the place-
valued decimal system and Arabic numerals. Fibonacci continued to write mathematical works at
least through 1228, and he gained a reputation as a great mathematician. Not much is known of
his life after 1228, but it is commonly held that he died sometime after 1240, presumably in Italy.

Despite his many contributions to mathematics, Fibonacci is today remembered for the
sequence which comes from a problem he poses in Liber Abaci. The following is a paraphrase:

A man puts one pair of rabbits in a certain place entirely surrounded by a wall. The nature
of these rabbits is such that every month each pair bears a new pair which from the end of their
second month on becomes productive. How many pairs of rabbits will there be at the end of one
year?

If we assume that the first pair is not productive until the end of the second month, then
clearly for the first two months there will be only one pair. At the start of the third month, the
first pair will produce a pair giving us a total of two pair. During the fourth month the original
pair will produce a pair again but the second pair does not, giving us three pair and so on.

Assuming none of the rabbits die, we can develop a recurrence relation. Let there be F,
pairs of rabbits in month 7, and F, , pairs of rabbits in monthn+1. During month n+2, all the

pairs of rabbits from monthz+1 will still be there, and of those rabbits the ones which existed
during the n™ month will give birth.
Hence F +F .

n+2

=F

n+l
The sequence which results when /| = F, =1is called the Fibonacci sequence and the

numbers in the sequence are the Fibonacci numbers:

n 123 456 7 8 9.
F 11 2 3 5 8 13 21 34..

Thus the answer to Fibonacci problem is 144.
Interestingly, it was not until 1634 that this recurrence relation was written down by

Albert Girard.
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Despite its simple appearance the Fibonacci sequence {F;,} contains a wealth of subtle

and fascinating properties which are listed below:
1. gcd(F,,F,,)=1 Vv n=0,1,273,...

2. K+F+F+-+F =F , —1.

n

3. F, =F _F +FF

m+n n+l *

4. F,=(-D)""F, n=>1.

5' men = (_1)"’ (Fan - Fm+1Fn)

+1

6. F |F, ;forall integers m and n.

7. F, _F

n+1" n-1

_E12 = (_1)” ‘
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2.1 Introduction:

Number Theory is one of the branches of Mathematics related to numbers. The

elementary properties are discuss in [6, 35] which we used through my research work. Fibonacci

sequence {F} is defined as F;=0,F =1and F,=F

n n—1

+F

., for n>2, which gives the
sequence 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144 .... The Fibonacci numbers also occur in
Pascal‘s triangle [7, 24]. This sequence arise naturally in many unexpected places and used in
equally surprising places like computer algorithms [S, 18, 19], some areas of algebra [2, 10],
quasi crystals [42] and many areas of mathematics. They occur in a variety of other fields such as
finance, art, architecture, music, etc. [2, 13] for extensive resources on Fibonacci numbers) The
Fibonacci sequence is a source of many identities as appears in the work of Vajda [43]. Recently,
new generalization of Fibonacci sequences has seized the attention of the mathematicians in [20,
29, 30, 31]. The definition of Fibonacci numbers can be extended to define any term as the sum
of the preceding three terms i.e. Tribonacci numbers in [36, 37].

There are fundamentally two ways in which the Fibonacci sequence may be generalized;
namely, either by maintaining the recurrence relation but altering the first two terms of the
sequence from 0, 1 to arbitrary integers a, b [29, 38] or by preserving the first two terms of the
sequence but altering the recurrence relation. The two techniques can be combined, but a change
in the recurrence relation seems to lead to greater complexity in the properties of the resulting
sequence.

We define a generalization of the Fibonacci sequence and call it the generalized Fibonacci

sequence. The terms of this sequence are defined by the recurrence relation

F;l(a’b):aF;z—l(a’b)+bF;1—2(a’b); nzza (211)
with initial condition F(a,b)=0 and F;(a,b)=1, where a and b are any fixed integers.

The first few terms of this sequence are shown in the following table:

n F (a,b)
0 0
1 1
2 a
3 a’+b
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4 a’+2ab
5 a*+3a’b+b’
We note that clearly { F,(1,1)} ={F, }, the sequence of usual Fibonacci numbers.
2.2 The sequence {F,(k,1)}, an introduction:
One of the purpose of this chapter is to study the subsequence {Fn(k,l)} of {Fn(a,b)} by
considering a=kand b=1 in (2.1.1). We call the sequence {Fn(k,l)} as the left k- Fibonacci

sequence which uses one real parameter k. We write it as F (k,1) = ﬂLn .

Definition: For any real number £, sequence {F,f } , the sequence of left k- Fibonacci numbers

N
is generated by the recurrence relation

Fl =kEl  +F, n>2 2.2.1)
where F;') =0 and F}, =1.

In [8, 11, 27, 44], a new generalization of family of Fibonacci sequences and each new
choice of a and b produces a distinct sequence. In [3, 4, 14, 15, 16, 17], the k-Fibonacci
numbers introduced and give simple proof of an interesting Fibonacci generalization.

Some of the terms of this sequence are shown in the following table:

n E,

0 0

1 1

2 k

3 k*+1

4 Kk +2k

5 k' +3k% +1

6 kK’ +4k> +3k

7 k® +5k* +6k* +1
8 k' +6k° +10k° + 4k
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9 K+ 7k +15k* +10k% +1

10 K’ +8k7 +21k° + 20k + 5k

11 k' +9k® + 28k +35k* +15k% +1

12 k" +10k° +36k” + 56k +35k> + 6k

13 k' +11k" +45k® +84k® +70k* +21k* +1

14 kP +12k" +55k° +120k7 +126k° + 56k + Tk

15 K +13k" +66k" +165k° + 210k° +126k* + 28k* +1
16 k" +14k" +78k" +220k° +330k7 +252k° + 84k + 8k

Appendix- I is computer program to obtain terms of left k- Fibonacci sequence{E 1} using

the programming language MATLAB (R2008a).
» Ifk =1, we get classic Fibonacci sequence defined by F, =0,F =1 and

F =F,  +F, ,, n>2.This gives the sequence
{F,}={0,1,1,2,3,5,8,13,21,---} .

» If k=2, we obtain classic Pell’s sequence defined by £, =0, B =1 and
P =2P_ +P_,,n>2,Here we have{P,} ={0,1,2,5,12,29,70,---}.

» Ifk =3,we get following sequence defined H,=0,H, =1and
H =3H, ,+H, ,,n>2.This gives the sequence

{H,}={0,1,3,10,33,100,---}.

Numerous results are available in the literature for the sequence {F,} of Fibonacci

numbers in [24]. The simple appearance of the sequence {kan} contains a wealth of subtle and

fascinating properties. In this chapter we explore several of the fundamental identities related

with sequence {F = } :
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2.3 Some basic identities of left k- Fibonacci numbers:
One of the purposes of this chapter is to develop many of the identities needed in the
subsequent chapters. We use the technique of induction as a useful tool in proving many of these

identities and theorems involving Fibonacci numbers.

Lemma 2.3.1 gcd (F,,F/,.)=1, ¥V n=0,123,...

k,n>

Proof: Suppose that F," and F/

k,n+1

are both divisible by a positive integer d .

Then clearly F,”

n+l

—F =kF! +F! _—F! =(k-)F" +F _ will also be divisible by d.
Then right hand side of this result is divisible by . This givesd | F, , .

Continuing this argument we see that d | F,, ,, d | F,",_; and so on. Eventually, we must
have d | F}f,l. SinceFkL,1 =1, we getd =1.

This proves the required result.
In [32, 46] Zeitlin obtain summation formulas and identities for Fibonacci numbers. We

denote the sum of first n left k- Fibonacci numbers by S, and prove some identities related with

the summation of left k-Fibonacci numbers.

Lemma 2.3.2 S, Z _1 F,f,H1 Fl -1).

Proof: Wehave F}" =kF," | +F' _,, n>2.Replacingnby2,3,4, ... we get
ECL,z = kF}cL,l + F}cL,o
FkL,3 = kF, kL,2 +F kL,l

L L L
Ec,4 = kEc,3 + Ec,2

F/L»L,nfz = kF}cL,n—s + EcL,n74
EcL,n—l = kF}cL,nfz + F}cL,na
F}cL,n = kF, kL,n—l + Effﬂ*Z
Now adding all these equations term by term, we get
Fly+ Fo et Bl = Fl+ (DS B+ + B ) +KE
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FL

L L L _ L L L L L L L
k.l +Fk,2 + Fk,3 +"'+Fk,n - Ec,o + Ec,1 + (k +1)(Fk,1+Fk,2+"'+ Fk,n—2+ Fk,n—1+Fk,n)

+kF,_ —(k+D(E,_+F )
(l_k_l)(FkL,l +FkL,2 +FkL,3 +"'+FkL,n) = FkL,o +FkL,1 _FkL,n—l _kaL,n _FkL,n

L L L L L L L L
k(Fk,1+Fk,2+Fk,3+"'+Fk,n):ka,n+Fk,n—1+Fk,n_Fk,1
FL 4 FL 4 FL 4ot F =L (L 4 FE ]

k.l k.2 k3T k.n _k( kn+l k.n )

An alternate method of proving lemma 2.3.2 is to apply the principle of mathematical
induction. Using the same process or by induction we can derive formulae for the sum of the first

n left k-Fibonacci numbers with various subscripts.

We next find the sum of first n left k-Fibonacci numbers with only odd or even
subscripts.

Lemma 2.3.3 zn:FL —lFL
i=1

k2i-1 — k ko2n*

Proof: We have F! =kF," _ +F! _,, n>2.Replacing n by 2, 4, 6...., we get
Ef,z = kF, kL,l + F}cL,o
ECLA = kEch + EcLz

L L L
Ec,é = kF}c,s +Ec,4

F;cl,‘2n—2 = kEcl,én—} +Fk]:2nf4
Ef,zn = kaL,Zn—l + Ecl,IZn—Z .
Adding all these equations term by term we get
Ef,z +F;cL,4 +ECL,6 +"'+EcL,2n
= k(EcL,l +ECL,3 +"'+F;CL,2n—1)+(ECL,o +Ef,z +EcL,4 +"'+EcL,2n—z)

L L L L L L L L
= k(Ec,l + Ec,3 toeet F}c,2n—l) + (F;cz + Ec,4 tee-t Ec,zmz + F}c,2n) - Ec,Zn

L L L L
0= k(Ec,l + F}c,3 toe +Fk,2nfl) _EC,Zn

1 .
FkL’1 + FkL’3 + F,f5 +e 4 F,fzn_l = szL,zn . This proves the lemma.
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Lemma 2.3.4 ) F/, = %(F,fw -D.
i=l1

Proof: We have F', =kF!,_ +F!,_,, n>2.Replacingnby 1,3,5... we get
F;cL,l =1
Ech = kEcL,z + EcLl

L L L
E{,S = kE{A + E{,?a

F;cL,Zn—l = kF}(LJH + Ec[,‘2n—3
Adding all these equations term by term, we get
Ef,l + EcL3 + EcLs oot EcL,2n—1
=1 +k(FkL,2 +EcL,4 oot E{L,Zn—Z) + (FkLl + FkLa + FkLs oot EcL,Zn—3)
=1+ k(FkL,z + FkL,4 Tt FkL,Zn—z + F/(L,zn)_kaL,zn
+ (FkL,l + FkLs + FkLs oot E{L,Zn—l) - FkL,Zn—l

0=1+k(F, + F'y++FL )~ (KE,, + FL, ).
1
Ef,z +EcL,4 + Echs e +E€L,2n = ;(Ef,zm -D.

The following results follow immediately from above lemmas.

Corollary 2.3.5 F!, =0(mod k)and F,,,, =1(mod k).

2.4 Some more identities for left k-Fibonacci numbers:

We now derive some more interesting identities for £ . First we prove the reduction

formula for F kfﬂ .

Lemma24.1 F-* =F- F*

k,m+n k,m-1" k,n

L L
+ Fk’mF

k,n+1*
Proof: Let mbe the fixed positive integer. We proceed by inducting onn.

For n=1,we have F*  =F"

kom+1l — % k,m-1

L L L
Fo+ FonFis

Since F, =0, F/, =1 and F, =k, we have F/,  =kF! +F'

kom+l — k,m k,m—12

which is true. This proves

the result for n=1.
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Now let us assume that the result is true for all integers up to some positive integer ‘#’. Then both

Flow=F L +FF

k,m+t k,m—1 k,m™ k,t+1
L L L L L
and Ec,m+(t—1) - Ec,m—lEc,t—l + Ec,mF;c,t hOIdS'
Now, from these two results we have

kE*

k,m+t

L L L L L L L L L

+ Ec,m+(t71) = k(E{,m—lEc,t + Ec,mF;c,tJrl) + (E{,mflEc,tfl + Ec,mEc,t) . Thus
L L L L L L L

F}c,mHJrl = Fk,m—l (ka,z + Fk,t—l) + Fk,m (k Fk,t+1 +Fk,t)

=F'

,m-—1

L L L
o+ FLF,

k,t+2

L L L L L
- Ec,m—lEc,Hl + Ec,mEc F,

(D)+ = D maeeny »
This is obviously true.

Thus by the mathematical induction, the result is true for all positive integers# .

Example: Ifm =2, n=3 then LHS =F/, , =F/, =k" +3k* +1and
RHS =FFL + FLEL = (DK + 1) + k(K +2k) =k +3k*+1.

It is often useful to extend the sequence of left k-Fibonacci numbers backward with
negative subscripts. In fact if we try to extend the left k-Fibonacci sequence backwards still

keeping to the same rule, we get the following:

n F

-1 1

2 —k

3 k* +1

4 —(k*+2k)

-5 k*+3k% +1
-6 —(kK’+4k’+3k)
-7 k®+5k* +6k” +1

Thus the sequence of left k-Fibonacci numbers is a bilateral sequence, since it can be
extended infinitely in both directions. From this table and from the table of values of FkLn , the
following result follows immediately.

Lemma 2.4.2 F' =(-D)""F/,n>1.

k.,n»>
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Note: This result will prove later on by Binet’s Formula.
We now obtain the extended d’Ocagne’s Identity for this sequence.

Lemma 2.4.3 F*

k,m-n

=(-V)"(F' Fn - F

k,m+1

F}cL,n) *

Proof: Replacing n by —n in Lemma 2.4.1, we get kawn = kanH Fkin + Ef,m Ft

k,—n+1 "
Using the definition of left k-Fibonacci sequence and Lemma 2.4.2, we get
FL

k,m-n

= FkL,m—l (_I)IHIFkL,n + FkLm (=" FkL,n—l

= (=D"[F, (F;

kn+l

—kF) = Foy (B = k) ]

= (_1)’1 (F;cL,mEc,nJrl - F;cL,er]F;cL,n) *

We next prove the divisibility property for F/, .

Lemma 2.4.4 F’ |F},  ; forany non-zero integers m and n.

Proof: Letm be any fixed positive integer. We proceed by inducting on #.

For n=1, we have F’, | ", , which is obvious. This proves the result for n=1.

Now suppose the result is true for all integers » up to some integer ‘.

i.e. we assume that F" | F" .

,m

L L L L L L
Then Ec,m(t+1) - Ec,mt+nz - F;c,mt—lF;c,m + Ef,hztEc,WHl .

But by assumption, we have F", |F/'

k,mt *

Thus F,", divides the entire right side of the above equation.
Hence F', | F',.,» Which proves the result for all positive integers 7.

Note: By Lemma 2.4.2 it is obvious that the above divisibility criterion holds for negative
values of n also.
We now find an expression for the sum of squares of first n left k-Fibonacci numbers.

L 1
Lemma 2.4.5 Y F'’ =;Ef,n1‘7f,n+1 .
i=1

PVOOﬁ We ObseI'Ve that F}cL,mz = F}cL,mF;cL,m = F;cl,m |:%(Ef,m+l - F;cL,m—l ):|

1

= ; ( EcL,mFL - EcL,mEcL,m—l ) .

k,m+1

Replacingmby 1, 2,3 ... we get
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1
Ef,lz = E (FkLleLz)

1
Ef,zz = ; (FkL,szL,s - FkL,leL,z )

1
ECL,32 = ; (FkL,3FkL,4 - FkL,szL,3)

1
Ec%n—lz = E (FkL,n—le[:n - Flf,n—ZFlin—l)

1
F;{L,n2 = ; (Flf,nFlin+1 - Fl‘rL,n—lFlf,n) .

k,n+1 *

< 1
Adding all these equations, we get the required result Z F,ff = ;kanF g

i=l1

Example: If n=3then RHS = %E{@F}Q = %(k2 +1)(k* +2k)=k*+3k’+2 and

3
LHS =Y F/P=F 2+ F +FLP =14k + (P + 1) =k* +3k7 + 2.

i=1
From this Lemma, the following result follows immediately.

Corollary 2.4.6 The product of two consecutive left k- Fibonacci numbers is given by
FkL,nF;fl,rH-l = kz F}(L,iz *
i=1

We next find the value of sum of squares of any two consecutive left k-Fibonacci

numbers.

2=FL

k2n+1*

Lemma 2.4.7 F!’ +F/

k,n+1
Proof: We prove this result by the principal of mathematical induction.

For n=1,wehave F’ +F.,” =F/;and F/, =1+k”. This proves the result forn=1.

We assume that result is true for all positive integers up to some positive integer ‘¢’.

Thus ">+ F!,* =F/

ksl i 2:,1 DOlds by assumption.

L 2 L 2 L 2 L L2
Now F, ., " +F. ., =F  +(FE, +E)

=F!, 2 +k*Ff

k,t+1 k,t+1

*+ 2k F +FL

g kol
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L
+ Fk,2t+1

=k’F'.’ +kF Fl, +kF F

k,t+1 kt+1

= kaL (k FkL,t+1 + F;cL,t) + kaL,tEcL,Hl + EcL,2t+l

Jg+1

= kF!

Jg+1

L L L L
Fk,t+2 + kEc,t+lEc,t + Fk,2t+1

L L L L L
= k(Ec,Hl Fk,t+2 + Ec,t+lEc,t) + Fk,2t+1

_ L L L L L
- k(Ec,HlEc,t + Ec,tﬂ Fk,t+2) + Fk,2t+l

_ L L _ L L

- ka,2t+2 + Fk,2t+1 - Ec,2t+3 - Ec,2(t+l)+1 .

This proves the result by induction.
Example: If n=3 then LHS =F' + F!> = (k> +1)" + (k> + 2k)’
=k°+5k* +6k> +1=F', = RHS .
We next derive a result which connects three consecutive left k- Fibonacci numbers with

odd subscript.

Lemma 24.8 F/, .- (K’ +2)F}, ,+F,, =0.

Proof: By definition, F.,, s =kF,, .+ Fy, 5 =k(kE,, s+ Fl )+ By
=(k* + I)Er%2n+3 + kFlfszrz-

Now Fly, s = (K +2)F 5, + Fl,
= (K + DS, s +hES,  — (K +2)F,,  + F,
= (K +DF), s~ +2)F,, + Flhy,y =0

We finally prove the analogous of one of the oldest identities involving the Fibonacci
numbers - Cassini’s identity, which was discovered in 1680 by a French astronomer Jean —

Dominique Cassini. (Koshy [24])
Lemma 2.4.9 F/

kn+l

FkL,n—l _Flf,n2 = (_l)n-

Proof: We have F/, \F/, —F.’ = (kF, + F, )F, - F.’
= kF}cl,lnEcl,ln—l - ECL,nZ + ECL,nflz

= B (kFL L = FL)+FLLC

= _F}cL,nEcL,n—2 + EcL,n—lz = (_1)(EcL,nF;cL,n—2 - F;cL,n—lz) *
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Repeating the same process successively for right side, we get

F;cL,nHEcL,n—l - F;cL,nz = (_I)I(Eclancljn—Z - EcL,n—lz)

= (_I)Z(FkL,n—leL,n73 - F}cL,nfzz)

= (_1)3 (F;cL,n—2EcL,n—4 - EcL,n—32)

= (_l)n (FkL,IF}cL,—l - FkL,oz)

=(-1)".

In |25, 28, 34, 44] matrices were used to discover facts about the Fibonacci sequence. We

now demonstrate a close link between matrices and left k- Fibonacci numbers. We define an

0
important2 x 2 matrix U = { k} which plays a significant role in discussions concerning left

k- Fibonacci sequence.

We prove the following results, which will be used later in the chapter.

Lemma 2.4.10 () U*=kU+1 QU =1-kU"".

0 1 0 1 1 k
Proof: (1) We have U’ = x - .
Uk 1 k| Tk 14k

0 1] [1 0
=k +
Rt

=kU+1

1k [ 2
) U” = |=Ut= N
k 1+k k 1+k —k

Joo [0 17" [k -1
an = =-
1k -1 0

!

1 0 k-1 2
L I—-kU " = +k = I+k k =U".
0 1 -1 0 |

This proves the required results.
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0 1 Fl., Ff
Lemma 2.4.11 1f U = then U" =| &7 "B ]
1 k F, F,

k,n k,n+1

Proof: We prove this result by using principal mathematical induction.

F:  F* 0 1
For n=1,wehave U=| " " ={ }
Fo B 1k

This proves the result for n=1.

Assume that the result is true for some positive integern =¢ .

t_ F;CL,t—l Eth .
Thus U'=| = .| holds by assumption.
k,t k,t+1
Now U™ — 'L :[f;ﬁ_l F, Mo 1} :[ Fl kF! +Fki_l} { F} F}
F;cL,t F;cL,Hl 1 k EcL,tJrl kF;cL,Hl + F;th F;cL,Hl EcL,HZ

Thus the result is true for n =¢+1 also. This proves the result by induction.
We can apply above Lemma to derive four new identities as the next corollary shows,

although they are basically the same.
CorOllary 24.12 E‘L’m*'"—l = EfLmEth + F;cL,m—lEcL,n—l

A Ay L L
Fk,m+n - F;c,mEc,nH + F;c,m—lEc,n
L pL L L L
Fk,m+n - Ec,erlEc,n + Ec,mEc,n—l
L oL L L L
Fk,m+n+1 - Ec,mHF}c,nJrl +Fk,mEc,n

Proof: We know that U" xU" =U™"

. _F}(L,m—l E{L,m x Efn—l F}(L,n — F}(L,m+n—l F}cL,m+n
OO R I O

k,m+1 kn+l k,m+n k,m+n+1

[ L L L L L L L L L L

. Ef,m—lF}c,n—l + F}c,mEf,n Ef,m—lF}c,n + F}c,mEc,n-H _ F}c,m+n—l F}c,m+n

. L L L L L L L L - L L
_ﬂ,mE{,n—l + E{,mﬂﬂ,n P}c,n1Ec,n + E{,m+1P}c,n+l F}c,ern E{,m+n+l

Now comparing the corresponding entries, we have above results.

Remark: Lemma 2.4.9 can be proved by using matrix.

0 1 F;an—l F;an
We haveU = .Then |U|=-1.Also U" =| *r "% |
1 k F}c,n F}(,}’H—]
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Then ‘U" - FkL”’*leLy”*l _F}CL,”z ‘Uﬂ - [ECL,n—lF}cL,nH - FkL,nz:I
SN =[FELEL Y] s BLELL R = ()

First, we will describe the terms of the left k-Fibonacci sequence F}fm explicitly by using a

generalization of Binet’s formula. Therefore, we will start the main content of the second part by

deriving a generalization of Binet’s formula (via generating functions).

2.5 Generating function for 7’ :

Generating function provide a powerful technique for solving linear homogenous
recurrence relation. Normally generating functions are used in combination with linear
recurrence relations with constant coefficients. Here we consider the generating functions for the
generalized Fibonacci sequence and derive some of the most fascinating identities satisfied by

this sequence.

Lemma 2.5.1 The generating function for the generalized left k-Fibonacci sequence {F/f,n}:

1S giVen be(X) = ﬁ .

Proof: We begin with the formal power series representation of generating function for{ﬂfﬂ} .

Deﬁne f(x): ZF}(mem = ngxm =g, +g1x+g2x2 4.
m=0

m=0
=0+ (1)x+ (kg +g0)x2 +(kg, +gl)x3 +(kg, +g2)x4 e
=x+(g, +gx+g,x +-)x” +kx(gx+g,x" +-+)

=x+x2f(x)+ kxf (x)
(1= Jor — X2 — __
S (l-kx—-x)f(x)=x= f(x) e

This is generating function of {F,fn }w

n=

2.6 Extended Binet’s formula F’ :
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While the recurrence relation and initial values determine every term in the Fibonacci

sequence, there is an explicit formula for F,fn which helps to compute any Fibonacci number
without using the preceding Fibonacci numbers.
In the 19th century, the French mathematician Jacques Binet derived two remarkable

analytical formulas for the Fibonacci and Lucas numbers. In our case, Binet’ formula allows us

to express the left k- Fibonacci numbers in the function of the roots « and £ of the characteristic

equation x” — kx —1 =0, associated to the recurrence relation F,’, = F" | +kF; _,,(n>2).

In [8, 17, 26, 40], Binet’s Formula was used to obtain some new identities for -

Fibonacci numbers. Here we will describe the terms of the left k — Fibonacci sequence {F,f)n}wio

explicitly by using a generalization of Binet’s formula and then will present extensions of well-
known Fibonacci identities such as Cassini’s, Catalan’s, and d’Ocagne.
Since, we have second order difference equation with constant coefficients. Therefore, it

k+~k* +4

2

has the characteristic equation x° =kx+1. The roots of this equation are o = and

k—~Nk +4

ﬁ:# . We note that o+ f=k,aff =—landa - f=\k>+4 .
Theorem 2.6.1 The n" left k- Fibonacci number F",is given by F}, = & _ﬁ ;
T,

where «, f are roots of characteristic equation x* = kx +1.

Proof: Using partial fraction decomposition, we rewrite f(x) as

Fx) = X _ A N B
(l-ax)(1-px) l-ax 1-px
Solving this equation for A and B, we get 4 = ! , B= -
a-p a-p

1 1 1 1 -1 -1
f(x)=a_ﬂL_ax—l_ﬂx}a_ﬂ[(l—om —(1-px)" |

:;[(Ha,ﬁoﬁxz o) = (1+ Bx+ X" +--4)]
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1 ] o0 n_ n 0
:a—Z(an_ﬂ”)xn:Za ﬂ xnzzgnxn
- n=0

n=0 & _ﬂ n=0
n
. an _ a?’l _ n
Since we have g, = P , we have F' = p :
a-pf ’ a-pf

This is an extended Binet’s Formula for {F,fn}w

n=

Remark: We can prove the Lemma- 2.4.2 by using Binet’s formula. We have F’, = i

-n_ —n _ a}’l _ﬂn
Substituting—r» in place of n, we get F,(L,_n _ P = ( )

a-f  a'p'(a-p)

Hence F" =(-1)""F' ,n>1, as required.

Catalan’s Identity for Fibonacci numbers was found in 1879 by Eugene Charles Catalan a
Belgian mathematician who worked for the Belgian Academy of Science in the field of Number

Theory. Here we obtain analogues result.

Lemma 2.6.2 F/, F' . -F'>=(-)""F".

k,n—r" k.n+r

Proof: By using theorem 2.6.1 and ¢f = —1on LHS of result, we get

—)"_ n—-r I‘H-)"_ n+r n_ nz
Ls & BT = p _(a ﬁj

a-pf a—-pf a—pf
_ (an—r _ﬂn—r)(anw _ﬂ;z+r)_a2n +2a",6'” _’an
(a=p)
- (a_;ﬂ)z:—(aﬂ)nr B —(af) o+ 2(0{ﬂ)q
= [ () (1) e (1)
(a=B)
O
=——— | +a” +2(-1
a7
(_l)n—wrl B . ) .
B e —2(-1
@y ]
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This completes the proof.
The following is analogues to one of the oldest identities involving the Fibonacci

numbers, which was discovered in 1680 by Jean-Dominique Cassini, a French Astronomer.

Lemma 2.6.3 £’ _F . —-F'>=(-1"

Proof: Takingr = 11n Catalan’s Identity gives Cassini’s Identity for the left k-Fibonacci numbers.

Now we derive extended d’Ocagne’s Identity.

Lemma 2.6.4 Ifm>n, wehave F,' F . —F

a+l L k,m+l

EcL,n = (_1)” EcL,m—n .

Proof: By using theorem 2.6.1 and aff = —10on LHS of the required result we get

m m n+l n+l m+1 m+1 n n
P iy i ey S i
a-f a-p a-f a-p

_ (a _1'6)2 [(am _ﬁm)(anﬂ _ﬂn+1)_(am+l _ﬂm+l)(an _ﬂn )i|
_ (a_lﬂ)z [aﬂ(amﬂnﬂ)_i_aﬂ(anﬂﬂm)+am+lﬂn +anﬂm+l:|
_ (ia_ﬂ;”)z I:am_n+1/82 +0[2,8m_n+1 Lo +ﬂm—n+l}

QY e g e g
- 2(“/3) a + ﬂ +a,6’2+a2ﬂ

= +

(a—,B)2 a B B a

o

]
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| e

Lemma 2.6.5 The sum of first(n +1) terms of the lef k -Fibonacci sequence is given by

NG

iE{L,z = SkL,n = %(F;f,nﬂ + E{L 1)
i=0

Proof: Using theorem 2.6.1, we write S, as Sy, = ;ﬂZ(ai - B = LZO/ > p
’ a—=p iz

a-p% i=0
B 1 an+1_1_ﬁn+1_1
Ta-B\ a-1  B-1
_ 0{"”,6’—,6’—0{"”+1—aﬂ"+1+a+ﬂ"+l—1
(a=p)(a-1)(A-1)
_ —O[n +,Bn+0(_,3—0{n+l+ﬂn+l
(a=p)(a-1)(5-1)
_ _(a" _ﬁ'1)+(a_ﬁ)_(an+l_ﬁzz+l)
(@ =p)(-F)

Hence

n+l n+l n n
Slin:l a ﬁ +a ﬁ 1 :l[Ef:’H—l

|
k| a-pf a—-p k ’

We now prove a simple but important result which states that the limit of the quotient of

two consecutive terms of {F,fn} is equal to the positive root of the corresponding characteristic

equation.

L

. k,
Lemma 2.6.6 lim——=a.
e B

Proof: Using Theorem 2.6.1 for F,fn , and using the fact that

lim(ﬁj =0, |,B| <a,we get

X—>0 (04

Page | 23



Note: For classical Fibonacci sequence we have lim £, =71, a golden proportion.

X—>0
n—1

We now prove a combinatorial identity which expresses F,", as an series with finite

number of terms.

n—1
L 2.6.7 F} = S 2 (g2 4)
emma 2.6. "’”_F;‘ - ( + )
Proof By theorem 2.6.1, we have
@' =f 1 (k+\/k2+4}n_(k—\/k2+4]

T a— B :a—,B 2

2

:ﬁ[(mm)l(;{_mﬂ

L {k” +mk"—'\/m+@k"—z(\/m)z+-.}
Vi {k"—(gk"lm{gk"z( k2+4)2—--1

3
:é{z(”jk"1\/k2+4+2(”jk"3( k2+4) +}
2'\Jk*+4| U 3

2 4
L e k“( k2+4) o k”’S( k2+4) o
71 3 5
=L e e (2 4+ K (K4 4) 4o
7|1 3 5

e, o
- FL — n—1-2i k2+4 )
bt 2 2i+1jk ( )
In [3, 4, 11, 44] many identities were derived related to o and . We next express "

and 3" in terms of two consecutive values of F .
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Lemma 2.6.8 o" =aF +F' _ and "= pBF" +F' .
Proof: We prove this result by the principal of mathematical induction.
Forn=1, we have RHS = OtF,f1 +F}f’0 =a=LHS
This proves the result forn =1.
We assume that result is true for all positive integers up to some positive integers ‘t’.

Thusa' = aF', + F/,_ holds by assumption.
Now, o' =aa' =a(aF,, +F, ) =a'F,+aF],,
t t t t t t
= (aEc,z +F ) Fk,;"’ aF,, = (ak+1) F. +af;,

= a(kFy, + F, )+ F, = aF,

L RS L
k’t+1+Fk’, ol =aF,

kt+l1

L
+F.
This proves the result is true forn =¢+1 also.

Hence the result is true for all positive integers n. Second result can be proved on the

same line.

We now define P, =a"; O, = B". We first derive the recurrence relation for both P, and Q, .

Lemma 2.6.9 P =kP_ +P

n-1 n-2°

n=2.

Proof: We prove this result by the principle of mathematical induction. For n =2 , we have

P=a :%(k2 +2kNE+ > 4+ K +4) :%(k2 +k\/k2+—>4+2)
_k[kﬂ/k2 +4j
2

+1=ka+1=kF,+F,
P, =kP, + P,, which is true for n=2.
We now assume that the result is true for some positive integer ¢.

Thus P =kP_, +P_, holds.
Now P, =a"" =a"'a’=a" (kP +F)=ka' +a'" =kP,+F_,

This proves that result is true for all positive integer n.

We also have the following result:

Lemma 2.6.10 Q =kQ,_,+0Q, ,;n>2.

We now prove a result which gives the value of £, in terms of power of o..
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C hapter- 3

Right k-Fibonacci sequence
and related identities



3.1 The Sequence {F,(1,k)}, an Introduction:

In chapter- 2, we defined a generalization of the Fibonacci sequence and call it the
generalized Fibonacci sequence. The terms of this sequence are defined by the recurrence relation
F (a,b)=aF, (a,b)+bF, ,(a,b);n=2,

with initial condition F,(a,b) =0 and F/(a,b)=1; where a and b are any fixed integers.

We note that this generalization is in fact a family of sequences and each new choice of

a and b produces a distinct sequence. One of the purpose of this chapter is to study the
subsequence {Fn(l,k)} of {F;(a,b)} by considering a =1and b=k . The sequence {E,(l,k)} is
called the right k-Fibonacci sequence which uses one real parameter k. We write it as

F,(Lk)=F,.

Definition: For any real number k, sequence {Fk’;} , the sequence of right k- Fibonacci
numbers is generated by the recurrence relation F, = F" | +kF[ _,, n>2;
where F) =0 and F/, =1.

First few terms of this sequence are shown in the following table:

n Fl

0 0

1 1

2 1

3 1+k

4 1+ 2k

5 1+ 3k +k°

6 1+ 4k +3k*

7 1+ 5k +6k> +k°
8 1+ 6k +10k* + 4K°
9 1+ 7k +15k* +10k° + k&*
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10 1+8k +21k° + 20k + 5k*
Appendix-II is computer program to obtain terms of right k- Fibonacci sequence {Gn}

using the programming language MATLAB (R2008a).
» If k=1, we get classic Fibonacci sequence defined by F; =0, F, =1 and

F,=F,_ +F,,, n>2.This gives the sequence { F, } ={0,1,1,2,3,5,8,13,21,....}
» If k=2, we obtain classic Pell’s sequence defined by £, =0, A =1 and
P =P_ +2P_,, n>2.Here wehave{P,} ={0,1,1,3,5,11,21,43,85,171,....}

» If k=3, we get following sequence defined H,=0,H, =1 and

H,=H, +3H,,, n>2.This gives the sequence {H, } ={0,1,1,4,7,19,40,97,...}

3.2 Some basic identities of right k- Fibonacci numbers:

One of the purposes of this chapter is to develop many of the identities needed in the
subsequent chapters. We use the technique of induction as a useful tool in proving many of these

identities and theorems involving Fibonacci numbers.
We denote the sum of first n right k- Fibonacci numbers by S and prove some identities

related with the summation of right k-Fibonacci numbers.

Lemma 3.2.1 S, Z —lﬂRn+2 1).

Proof: We have F}fn =F" _+ ka’fnfz, n>2.Replacing n by 2, 3, 4,... we get
FY, = Ff +kEY)
Fls = B+ kE
Ef‘t - Ef; +kE, k],az
F/fn—z = F/fn—s +kF, kl,?n—4
Effn—1 = E«Ifn—z + ka]fn—?s

R _ R R
Ec,n - Ef,n—l + ka,n—2
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Now adding all these equations term by term, we get

R R R R R R R R R R
F;c,2 +F;c,3 +"'+Fk,n = (Fk,l+Fk,2+”'+Fk,n—1)+k(Fk,0+Fk,l+Fk,2+'”+Fk,n—2)

R
Fk,n

—Fl =k(FS + B+ S+ + B ) —kES -k F,
k(Efl + ECI?Z +--t Ec[fn) = F}fn + kF}fnfl + kF/fn - ij,el

=Ff

k,n+1

+ kF kRn 1 = F;cRn+2 1

1
Efl +Ef2 +Ecj,23 +"'+Efn :%(Efmz =1).
1
Lemma 3.2.2 S, = Z FkRsz 1).
Proof: We have F = Efn_l + kEfn_z, n>2.Replacing n by 2,3, 4,... we get
F}fz = F}fl +kF, /fo
Ef; = F}fz + kEfl

R R R
Ec,4 = Ec,3 +ka,2

R _ R R
Ec,2n—l - F;c,2n—2 + kF}c,2n—3

R _ R R
Ec,2n - F;c,2n—1 + kF}c,Zn—Z

Now adding all these equations term by term, we get

R R R R R R R
E{,2 + F}c 3 +eeet F}c 2 (1 + k)(Fk,1+ Fk,2+ et Fk,2n—2) + Fk,Zn—l

F+ES++FS, = FS + 1+ k)ES+F L+ +FF,)
-1+ k)(FkRZn T Echn )+ E;Rzn 1
k(FVkI,?l + FkRZ +e-t FkRZn) k 2n + kaRZn 1 + kaRZn Fle

R R R . R R R R R
= Ef,2n+1 + kEc,Zn -1= Ec,2n+2 -1 Fk,l + Fk,z + Ec,s +eoet Ec,Zn (Fk 2n+2

The following results follow immediately from above two lemmas.

Corollary 3.2.3F" , =1(mod k)and F,,,, =1(mod k) .

k -+
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Proof: We use Mathematical Induction to prove the first result.

Forn=1, we have F",, =F,f3 =l+k= l(mod k).

We now assume that the result is true for some positive integer n =7 .Thus by assumption,
F" ., =1(mod k) holds.
Now Fl = Fiis = Flop +hF, =1(mod k).
So the result is true for n =r+1also. This proves the result for all integers .
The second result can be proved on the same line.
An alternate method of proving Lemma 3.2.1 is to apply the principle of mathematical

induction. Using the same process or by induction we can derive formulae for the sum of the first

n right k-Fibonacci numbers with various subscripts.

We next find the sum of first n right k-Fibonacci numbers with only odd or even

subscripts.

1

Lemma 3.2.4 Z o M(F,ZM

- kF;fan +k-1).

Proof: Wehave F =F" _ +kF[ _,, n>2. Replacingnby3,5,7 ... we get
Ef; = F}fz + kEfl
F/fs = F1f4 +kF, k],a3

R _ R R
Fo = Fig +kEs

Efzwl = F;f2n—2 + kF}fzna
Adding all these equations term by term and using Lemma 3.2.2, we get
FA+FS+FS++FY  =F +(FS+FS++FY,L)

+k(FR +FR +-+ EE ons)

L ARG+ ESH B B, ) =14 (FL B+ B L+ FD,)

R R R R R
+k(ﬁ;{,l+F}(,3+P;€5+ +F2n D- Foo— Fk,zn—l
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(2 - k)(FkI,el +Ef3 + Efs teeet F;onfl) =1- (F;on + kECI?anl) +(Efl + Fklfz teeet F;f2n)

1
(2 - k)(F;fl + F;f3 + F;fs oot F;on—l) =1- Efznu + % (F;fznu - l)

1
CE B B = o (Bl =y +E ).
o 1
Lemma 3.2.5 ZFZ;[ = k(2 k) (F;ij’2l1+2 _kzF;CIle‘l _1) *
i=l1 -

Proof: Wehave F* =F" | +kF _,, n>2 .Replacingnby2,4,6, ..., we get
Efz = Efl + kF}fo
Efzt = Ef; +kF, kj,ez

R R R
Ec,é = F}c,S +ka,4

R R R
Fion = Frana ka,Zn—Z
Adding all these equations term by term and using Lemma 3.2.2, we get
R R R R R R R R
Feat Foat bt +F,, = (Fk,l +Fes+ Fes +"'+Ec,2n—1)
R R R R
+h(FG+ Fy + Fog++F 5,
Z(Efz +Ec1,e4 +Fk1,36 +"'+Ec},azn) = (Efi +F}f2 +Ec},e3 +"'+Ec},azn)
+k(F}fz +Ec1,e4 +Ec1,36 +"'+Ec1f2n)_kF}c},ezn

(Z_k)(Efz +Ef4 +Ef6 +"'+F}fzn) =(F}f] +F}f2 +F}f3 +”.+F;f2n)_kF;f2n

1
= ; (Efzmz -)- kEfzn

1
R R R R R 2 R
Ec,z +E€,4 +F}c,6 +"'+F}c,2n = (F}c,2n+2 —k F;C,Zn _1) .

Ck(Q2-k)
We now prove a result which gives the value of product of two consecutive generalized

Fibonacci numbers.

3.3 Some more identities for right k-Fibonacci numbers:

We now derive some more interesting identities for £ . First we prove an interesting

reduction formula.
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Lemma 3.3.1 F* =kF"

k,m+n k,m-1

R R R
Fen * P

k,n+1*
Proof: Let m be the fixed positive integer. We proceed by inducting on 7.

Forn =1, we have F"

k,m+1

R R R
= kE{,mle;c,l + F

k,m

R
F,.

: R R R R R . .
Since F, =F_, =1 ,wehave F_, ., =F_, +kF, ,, whichis true.

This proves the result for n=1.

Now let us assume that the result is true for all integers up to some integer ‘#’.

Thus both F* = kF*

k,m+t k,m-1

R R R R _ R R R R
Ec,t + F;c,m‘F;c,tH and Ec,m+(t—1) - kEc,m—lEc,t—l + Ec,mEc,t hOIdS'

Now, from these two results we have F*

k,m+t

+ kEfer(t—l) = kEfm—l (Efz + kF;ft—l) + F;cRm (Efm + kF;ft)

= kEfmflEcR +F}c1,?mFR

g+ k,t+2
R R R R R .. .
= kF}c,m—lF;c,tJrl + F;c,mF;c,(tJrl)Jrl = Ec,m+(t+l) , this is obviously true.
Thus by the principal of mathematical induction, the result is true for all positive integers 7.
It is often useful to extend the sequence of right k-Fibonacci numbers backward with

negative subscripts. In fact, if we try to extend the right k- Fibonacci sequence backwards still

keeping to the same rule, we get the following:

n Ef
1
-1 L
k
1
) —5
1+k
3 e
1+2k
4 -—
143k + k2
-5 e
1+4k+3k>
6 S
1+5k+6k*+Kk°
7 -
1+6k+10k*+4k>
8 _ .
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Thus the sequence of right k- Fibonacci numbers is a bilateral sequence, since it can be

extended infinitely in both directions. From this table and from the table of values of FkRn, the

following result follows immediately:

(_ 1)n+1

n

Lemma 3.3.2 £ = an=1.

Note: This result will prove later on by Binet’s Formula.

We now obtain the extended d’Ocagne’s Identity for this sequence.

Lemma 3 3 3 F}cRm n = (_kln) (FR F}cRnJrl E{erlFR )

Proof: Replacing n by —n in Lemma 3.3.1, we get F," _ =kF." F" +F" F"

kmn k,—n+l*

Using the definition of left k- Fibonacci sequence and Lemma 3.3.2,
we get

_1\ntl
E{ m-n = kaRm 1 ( 112, Eflfn +Eme (knl)l EfRn 1

1
(k")l (FR E{Rn 1 F}cm IFR )

_ &)

1
k”l [FR ( kn+l_FR)_ ( kom+l km) ]

FR = (_1) (EmeEerHl F

k,m—-n kn k,m+1

F)-
We next prove the divisibility property for Efn .

Lemma 3.3.4 F' |F” ; for any non-zero integers m and n.

k mn
Proof: Let m be any fixed positive integer. We proceed by inducting on 7.

Forn=1, we have F R | EX , which is obvious. This proves the result forn =1.

k m?
Now assume that the result is true for all integers » up to some integer ‘¢’.

Thus F, | F;",, hold by assumption.

_ R R R R
E\c mt+m kF}c Jmt— IF + Ef mtEc m+1°

Then Ff

k,m(t+1)

But by assumption, we have F* | F, Thus F, divides the entire right side of the

kmt

above equation. Hence F", | F" this proves the result for all positive integers n.

Jm (t+1) 2
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Note: By Lemma 3.3.2 it is obvious that the above divisibility criterion holds for negative

values of n also.

Lemma 3.3.5 F*’ +%F’e > _ L

k,n+1 k k,2n+1 "

Proof: Here also we use the principal of mathematical induction.

1 1 1 1
Forn=1 , WEC have F;flz +EE{]’622 =1 +E = %(1 +k) = ;Fk]; .
This proves the result forn =1.

2

We assume that it is true for all integers up to some positive integer ‘¢ .

1 1 .
Fr? +2Fkﬁ+12 = szR,ZM holds by assumption.
1 1
NOW Eftﬂz + szI,et-ﬁ—Zz = FkR,t+12+%(Flfz+l+ kaRt)2

1
=F} 2+ z(F;f 242k FEES L+ KCFRY)

t+1

= F R 4 (B RS KL L)

k,t+1

1 1
= k(Fthz + EFZ,?HIZ + E[F}ftﬂ (F}c},atﬂ + kF}th) + kEc},etF;c},eHl]

1 1
= k(; ij,zzm) + Z[Fkl:Hlel:t+2 + kECL,szL,Hl]

N3

1
= Fklfzm + E (k FkIft F/fm + EfkaR +z)

_ERR R _ _ TR
- Fk,21+1+ ZFk,HlJrHl - ;Fk,21+3 - Fk,2(t+1)+1

This proves the result by induction.
Now, we derive a result which connects three consecutive right k- Fibonacci numbers

with odd subscript.
Lemma 3.3.6 £, .- Qk+)FS, ,+K°F,. =0.

Proof: By definition

R _ R R _ /R R R
F;{,ZnJrS - E{,2n+4 + kE{,2n+3 - (F;{,ZnJr} + ka,2n+2) + kE{,2n+3

= (k + 1)Ef2n+3 + kEfzmz'
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Now E{R2n+5 2k +DF" kone3 T szfzm
- (k + 1) k,2n+3 + kF;cRZHJrZ (2k + 1) k,2n+3 + kzF;quH
= (k + I)F;cl,e2n+3 - (2k + 1)];;c},e2n+3 + k(F;fZin + kF;fan)

=(k+DFL, s~ Qk+DF), ., +kF)

k,2n+3

:0.

We finally prove the analogous of one of the oldest identities involving the Fibonacci

numbers - Cassini’s identity.

Lemma 3.3.7 Ff | Ff_ -F'=(-1)"k"".
Proof : Wehave F | FX  —F'?=(Ff +kF} _)Fl_ —Ft?

"l

= Eanfn—l - F;fnz + kjrkj,en—l2
_FR(knl )+kknl
= F}fn (_kF;fn—2) + kF}fn—lz

= _k(FR F}cRn 2 _Fk],an—lz)
Repeating the same process successively for right side, we get
F;cn+1F}cRn1 kn _( k)( k,n—1 kn3 FkI,?n—Zz)

=(—k)" (Fle 'Fk],a—l - sz’aoz)

n l_ —(—1)\" n—1
=(-k) (l.k 0)=(-D"k

: 1
Since the value of F' =1 F =0,F" =— , we have
’ ’ Tk
Fk n+l® F}cRn 1 k],anz = (_l)n-knil
We now prove an interesting result which expresses the right k— Fibonacci number as

the sum of the preceding right k— Fibonacci numbers.

Lemma 3.3.8 " —1+k2 Kin=2.

Proof: We prove this result by the principal of mathematical induction.

For n=2,wehave LHS = F, =1=1+k(0) =1+ F, = RHS .
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This proves the result for n=2.

We assume that it is true for all integers up to some positive integer ‘z.
Thus F* =1+k) FY; =2, holds by assumption.

Now we consider the right side of the result to be proved for n=7+1.
Since F, =0,
RHS =1+ k(F' +F,+EY - +E )
=B+ kEl +k(ES+ES - +E )
=FS+kFS +k(FS +FS +-+ FL
Continuing this process on right hand side, the last term will be

.. RHS =F' +kF!_ =F', =LHS

k,t+1

.. The result is true for n =¢+1. This proves the result by induction.

Lemma 3.3.9 ged(F",F",)=1, V n=0,1,2,3,...

,n

Proof: Suppose that 7" and F,"

k,n+1

are both divisible by a positive integer d. Then clearly

R R R R R R
F;c E{ F}c,n + kE{,n—l - F}c,n = kF}c,n—l

o+l - N =
will also be divisible by d. Then right hand side of this result is divisible by d.
This gives d / kF", .

First we claim that F"  is always relatively prime to k.

n—2
From the lemma 3.3.8, we have FX =1+k) F"; n>2.
i=0
If some integer d >1 is divisor of both F*, and k, then from above result it is clear that

d must divide 1, a contradiction. Thus F", is always relatively prime to k.= d | F", | .

Continuing this argument we see thatd | F"_,, d | F,"_; and so on. Eventually, we must

have d | F'| . Since F, =1we getd =1, this proves the required result.

As we define matrix in Chapter- 2, we demonstrate a close link between matrices and

0 k
right k- Fibonacci numbers. We define an important 2x 2 matrix U :L J , which plays a

significant role in discussions concerning right k- Fibonacci sequence.
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We prove the following results, which will be used later in the chapter.

Lemma 3.3.10 (1) U>=U+kl (2)U> :%(I—U‘l).

L
Proof: We have U™ = X =

I 1 I 1 1 1+k
0 k 1 0
= +k
I 1 0 1
=U+kl
o, [k &k Lok k7 1 [1+k -k
(2) Again U” = =>U" = =—
1 1+k 1 1+k kY| -1k
CTo KT a1 -k
and U™ = =——
1 1] k-1 0
1 o] 1[1 —k]
l(1—U*1)=l b
k[0 1] k°|-1 0
1([k O] [1 —k]
k(|0 k] [-1 0]
1 [k+1 —k o
= =l 1 & =U"", this proves the results.
0 k kER | kFE
Lemma 3.3.11 If U = thenU" =| = Fo=t B
1 1 Ec,n F;c,nﬂ

Proof: We will prove this result by using principal of mathematical induction.

kFE  kE® 0 %k .
For n=1,wehaveU=| % "~ ! |= , this proves the result for n=1.
Feo  Fe 11
.. t kF}th—l kF}th
Assume that it is true for n =¢. Thus U’ = " < | holds.
k,t k,t+1
NOW Ut+1 — UtU — kF}CIi—l kﬁ‘k{i {O k} — kﬁ}f}i kF}(Ii + kzF}:ft—l
F;cl,?t Eftﬂ l 1 F;c],ewl F;cl,?tﬂ + kF;th
_ {kF;i kﬂﬂ
Eftﬂ Efwz
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Thus the result is true for n =+ 1also. This proves the result by induction.

Remark: Lemma: 3.3.7 can also be proved by using this matrix U.

0 %
Wehave,Uz{1 1}then|U|:—k.

kES . kEE
Also U” { ot } . Then \U" =kF® _FF  —kFR?.
F F ’ ’ ’
k,n k,n+1
E ‘Un = kl:ijfn—lejan - ijfnzj

R2
k,n+1 _Ec,n :|

(k) =k LR

R R

len=1Lk 1 _F}fn2 = (_1)’1 K
We can apply above Lemma to derive four new identities as the next corollary shows,
although they are basically the same.

In the next article, first, we describe the terms of the right k-Fibonacci sequence F}fn

explicitly by using a generalization of Binet’s formula. We will start the main content of the
second part by deriving a generalization of Binet’s formula (Via generating functions) and then
will present extensions of well known Fibonacci Identities such as Cassini’s, Catalan’s,
d’Ocagne’s.

3.4 Generating function for right k-Fibonacci number:

Generating functions provided a powerful technique for solving linear homogeneous
recurrence relations. In this section, we consider the generating functions for the generalized

right k- Fibonacci sequence and derive some identities satisfied by this sequence.

Lemma 3.4.1 The generating function for the generalized right k -Fibonacci sequence {FkR }

NG

X
1s given b X)=——.
given by /()=

Proof: We begin with the formal power series representation of generating function for{F,fn} .

S)= Bl "= g, 0" =g +gx+g,x" +g,x° +.....
m=0

m=0

=0+)x+(g +kg0)x2 +(g, +kgl)x3 +(g; +kg2)x4 tee
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=Xx+(g,+gX+gxX +)x+ ke’ (gx+gx’ +00)

=x+xf(x)+kx’ f(x)

(1—x—loc2>f(x>=x:»f(x>=ﬁ.

This is the generating function of {FkRn} .
3.5 Extended Binet’s formula for 7 :

For any positive real number &k, the right k -Fibonacci sequence {Effn} . is defined

recurrently by F* | = F" +kF_,n>1 where F =0,F/ =1which is second order difference

nil

equation with constant coefficients. Therefore, it has the characteristic equation, x*—x—k=0.

1++1+4k 1-+/1+4k

The roots of the characteristic equations are « = — and g = — For
k>0,<0<a, |f|<a.Also a+ =1, aff =—kanda — f =+/1+4k . The following theorem is

the extended Binet’s formula for F .

Theorem 3.5.1 Prove that F* = @ =P

a-p
Proof: The generating function for the generalized right k-Fibonacci sequence is given by
X . b A B
x)=—— Werewrite f(x) as x)= = +
S 1—x—kx* /) S (I-ax)1-px) l1-ax 1-px
Solving these we get 4 = , B= - . Thus
o- ,6’ a-p
fx)=— Sl =0-p9"]
-pl1-ax
_ ! [(1+ax+a’x> +--)—=(1+ fx+ p2x* +--9)]
a-p
1 0 0 al’l _ﬁl’l o0
—-_ - (an_ﬂn)xnz xn= gnxn

n n n n
: a' - a'—
Since we have g, = P Hence F! = p

a-pf ’ a-pf

This is the extended Binet’s formula for F[,.
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Particular cases of these sequences are as follows:

» Ifk =1, for the classical Fibonacci sequence, we have o =

1+J§ l—Jg
2

and S == o is known

as the golden ratio.

» Ifk =2, for the Pell’s sequence, we have a =2 and f=-1, « is known as the silver ratio.

1+\/E 1—\/E
y P

where « is

> Finally, if k =3 for the sequence {H, }, we have a =

known as bronze ratio.

Remark: We prove the Lemma 3.3.2 by using the Binet’s formula.

n n
a' - p

We have F}fn = . Substituting —n in place of n, we get

R e s
k,—n Ol—ﬂ a"ﬂ”(a—ﬂ)

Lemma 3.5.2 (Extended Catalan’s identity) F" F~

kn—r" k.n+r

(_ 1)n+1 FR

R _
. Hence F,_, = o L

n>1, as required.

_EfnZ — (_1)n+l—r kn—rEfrZ

Proof: By using theorem 3.5.1 and a+ =1, aff=-k in LHS, we get

LHS =

an—r_ﬂn—r an+r_ﬂn+r_ a”—,B" 2
a-p a-p a-f

) O ) O
(a_ﬂ)z[ﬂ 2( ﬁ)] —(a_ﬂ)z( B

2
_ _1 n—r+l kn,, (24 _ﬂ _ _1 n—r+l kn,rFRz'
e e SR e

This proves the required result.

Now we derive the extended d’Ocagne’s identity for Efn.

Lemma 3.5.3 If m > nthen Emean —FX

k,m+1

Efn = (_1)” knF;fm—n :
Proof: By using theorem 3.5.1 and a+ f=1,aff =—k on LHS, we get

Page | 39



n+l 6¥m+1 _ﬁerl an _ﬂn
a-pf a-pf

- (=g ) =)~ =N - )]

(aﬂ)" _amﬂrﬁ—l ~ an+lﬂm . am+lﬁn .\ anﬂmﬂ
(=B | (aB)  (aB)  (ap) (B

Lemma 3.5.4 The sum of first (n+1)terms of the right k- Fibonacci numbers is given by

SR =Sk = (R ).

Proof: By theorem 3.5.1, S ,ﬁn can be written as

R L i :___l__ N o —3 g
Sio =g 2@ =F) a—ﬁ[ga gﬂ}
B 1 an+l_1_IB”+1_1
_a—ﬁ a-1 IB_I
_ an+lﬂ_ﬂ_an+l+l_aﬂn+l+a+ﬂn+l_l

(a=pB)(a-1)(B-1)
:_kan+kﬂn+a_ﬂ_an+l+ﬂn+l
(a=B)(-k)
i _k(an_ﬂn)+(a_ﬂ)_(an+l_ﬂn+l)
(a=p)(-*)
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1++/1+4k 1—~1+4k

Since, we have (a—l)(ﬂ—1)=—k and a:T, ,B:T we get

a-f k| a-p

St = [mz 1].

Ff
Lemma 3.5.5 lim—"=a.
x> [

k,n—1

n_ pon n+l _ pn+l
st, =L =8 A B | ekt ]

Proof: By using theorem 3.5.1, we have

e e
lim—kn —fim % =B im N,

X—>0 E{Rn—l X—>0 an_l _ﬂn_l x—)wl (ﬁj"l

o

This happens since, we have lim (ﬁj =0, | ﬂ| <a.

X—>0 (94

We finally prove the following combinatorial identity for Efn .

Lemma 3.5.6 F =— ( . j(1+4k)’.
gt | 94 ]

1 \/1 4k, _1-\1+ak
Ly T anda - =i+ 4k, af = -

Proof: By using a =

P 1+ Ji+4k (1—@}
g ,6’ \/1+ 4k
T —1+4 [(1+ 1+4k) _Ji+4k )}

(
=;\/_ ([j 1+4k+(§j(m }
2'1+4k | _(n

1 n n 3 n i
=———12|  |N1+4k+2 Ni+4k) +--| - Ef = 1+4k) .
2”«/1+4k{ (1} £3)( ) } on =T £ [21+1j( +4k)
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C hapter — 4

Associated left and right

k- Fibonacci numbers



4.1 Introduction:

0

In [1] Alvaro H. Salas defined the sequence {Ak,n}wzo associated to {Fkn} L, 38

Ay, =F, +F,, where 4, ,=1for n=1,23,.... He then defines associated k- Fibonacci

W
numbers by recurrence relation

Ak,n = kAk,n,l + Ak,,,,z; n>2 where Ak,o =1.
In this chapter we define associated left k- Fibonacci Sequence{AkL,n} and associated

right k- Fibonacci sequence{A,f’n} and prove some interesting properties of both associated left

k- Fibonacci numbers and associated right k- Fibonacci numbers. Despite its simple appearance,

this sequence contains a wealth of subtle and fascinating properties. In this chapter we explore

several of the fundamental identities related with AkL’ , and A,f’n .
4.2 The associated left k-Fibonacci numbers:
Definition: The sequence of associated left k- Fibonacci numbers{AkL’n} associate to left k-
Fibonacci sequence {FkL’n} is defined as A,ﬁo =land A,in = FkL’n + FkL,,H, n=123...
We observe that the expression A,{L’n is the sum of the two consecutive left k-Fibonacci

numbers FkL’n and its predecessor FkL,,H. The members of the sequence {A,(L’n} will be called

associated left k-Fibonacci numbers. An equivalent definition for the sequence {A,f n} is

1 ,if n=0
Af, =11 Jif n=1
(k+1)Fry,  +F ynif 22
Observe that A;, = F}, + Fl, . =kFy, + FiL, oy +kFL, o, + Bl
= k(Ecl:nfl + FkL,n72) + F;cL,n72 + F}cl,lnffa = kAkL,nfl + AkL,n72

This allows defining recursively the sequence of associated left k-Fibonacci numbers as
follows:
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Lif n=0
Af, = Lif n=1
kAL oy + ALy if 122
Members of associated left k- Fibonacci sequence {AkL n} will be called associated left k-

Fibonacci numbers. Some of them are

n A,f,n

0 1

1 1

2 k+1

3 k*+k+1

4 K+ k*+2k+1

5 K*+ 1 3k + 2k +1

6 K> +k* + 4k + 3k + 3k +1

7 K® + 15 +5k* +4k> + 6k + 3k +1

8 k' +k® +6k> +5k* +10k> + 6k* + 4k +1
9 K+ k7 +7k% + 6k° +15k* +10k> +10k* + 4k +1
10 K +k® +8k7 +7k® +21k° +15k* + 20k +10k* + 5k +1

Appendix-III is computer program to obtain terms of associated left k- Fibonacci

sequence {4, | using the programming language MATLAB (R2008a).

4.3 Basic identities of associated left k- Fibonacci numbers:

One of the purposes of this chapter is to develop many identities and results. We use the
technique of induction as a useful tool in proving many of these identities and theorems

involving Fibonacci numbers.

Lemma 4.3.1 ged(Af,.Af,,)=1 Vn=0,1,23,..
Proof: Suppose that A,i , and A,i .. are both divisible by a positive integer d. Then their

difference A, —Af, =kdi, + A, — A, =(k-DAL,+ A4,
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will also be divisible by d . Then right hand side of this equation is divisible by d . Thus

d| A, Continuing we see that d | Ay, ,, d | A;,_yand so on...

Eventually, we must have d | A1[§,1- But A,f’l =1 then d =1. Since the only positive integer which

divides successive terms of the associated left k - Fibonacci sequence is 1. This proves the
required result.

Next we derive the formula for sum of the first n associated left k - Fibonacci numbers.

Lemma 4.3.2 4 + A4, + A4, ++ A4, = ! (A ,at+4,—2).

- % kon+l

Proof: We have Af, =kA{, |+ A4, ,, n>2.
Replacing n by 2, 3, 4... we have
Ay = kAL + Al
Aiy =kAi, + ALy,

L g 4L L
A g =kA 5+ A,

L 4L L

Ap g = kAL, + A s
L 4L L

Ay =KAoy + A,

Adding all these equations term by term, we get

A,f,1+A,f’2+A,f,3+-~-+A,f’n
= AL+ DAL+ AL+ + AL )+ KA+ AL
= Ao+ Al + (K + DAL+ AL+ + AL = Ap o — (k+ DAL,
(A=k=1)Af + Afy ++ AL = Af g+ AL = (A + kAL, + AL,)

—k(Aﬁﬁ Ak{2 et Ak{n) =2—(kA{ y + AL)

1
. L L L L _
C Ah1 +Ak’2 +Ak’3 +---+Ak’n

—%(AL +4;,-2).

kon+l

An alternate method of proving Lemma 4.3.2 is to apply the principle of mathematical
induction. Using the same process or by induction we can derive formulae for the sum of the first

n associated left k-Fibonacci numbers with various subscripts.
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We next derive the sum of first n associated left k —Fibonacci numbers with only odd or

even subscripts.

Lemma 4.3.3 4 + A4, + A ++ A, = ( A5, =)

Proof: We have A,f’n = /’cAkL’n_1 + A,f,n_z, n=2.Replacing n by 2,4, 6... we have
Ay = kAL + AL
Ay = kA s+ A

L 4L L
Are =kAr s+ A; 4

L gL L

Ak,2n—2 - kAk,Zn—S + Ak,2n—4
L gL L

Aoy = kA g + Aoy s

Adding all these equations term by term,
ALy + AL+ AL+ + A,
= k(AL + Al s+ AL )+ (Ao + AL+ AL+ + A5 0)
= A/é,oﬂL k(Alé,l + AkL,s Tt AkL,Zn—l) + (AkL,2 + AkL,4 Tt AkL,2n) - AkL,2n

0:Aé,o"'k(A "‘AkLs"‘ "‘AkLG - Aan
Alfl+AkL3+ +AkLan (AkLZn )

Lemma 4.3.4 A4 ,+ A4 ,+ A4+ -+ 4,,, = (Ak = D).
Proof: We know that Ak = kA,fn L+ Af s N2
Replacingn by 1, 3,5 ... we have
4L =1
Ay =kAl, + A,

L g 4L L
Aps =kAg 4+ Ay

L 4L L
Aoy =kAg 50+ A2y s
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Adding all these equations term by term,
Af + Al s+ Al s+ + A,
= AL AL Af g et A, )+ (AL + Al et 4L, )
= Ap k(AL + AL+ + Ay, —KAL,+
(Aﬁ,1 + AkL,3 oot AkL,znfl) - AkL,zn—l

0=1+k(A£2+A£4+”'+A£n)_(kAé3M*Ainq)
1
L L L L L
A+ A g+ Ao+ + Ao, = T (Ag 21— D).

The following results follow immediately from above two lemmas.
Corollary 4.3.5 4/,, =1(modk) and 4,,, =1(modk).

Proof: We use Mathematical Induction to prove the first result.
For n=1, we have 4, =1+k=1(mod k)
Suppose it is true for n=r, Thus £, =1(mod k) holds.
Now, 4/, = kA,i2r+1 +Af, = l(mod k).
So the result is true for n =r+1also. This proves the result for all integers 7.

Similarly, we can prove the second result.

We next investigate the interesting new reduction formula for 4, .

— AL

Lemma 4.3.6 4/, = Al A, + 4" Al k.m+n-1 -

m-+n k,n+1

Proof  Let m be a fixed integer and we proceed by inducting on 7 .
For n=1 , we have

4L

L L L 4L L
ems1 = Aema iy + Agm Ay — Ak m

Al = A O+ AL kD= AF
A,ﬁml = kA,im + A,ﬁm_l , (o A,fJ =1, A,Qz =k+1)

This is obvious.

Now let us assume that the result is true for n=1,2,3,---,t;
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L
Ak,m+z

L L L 4L L
= Ak,m—lAk,t +4 Ak,t+1 — Ay and

k,m

L gL L L
Ak,m+(tfl) - Ak,mflAk,tfl + Ak,m

A - A

k,m+t—2
We will show that it holds for n =¢+1, also from above two equation, we have

L 7 4L
Ak,m+t+1 - kAk,m+t

L
+ Ak,m+(t—l)

= k(Aj s A+ A A )+ Ay A+ A A

k,m-1

= AkL,m—l (kAkL,t + AkL,t—l) + AkL,m (kAi,Hl + AkL,t) - (k AL + AkL,m+t—2)

k,m+t—1

= A*

k,m+(t+1)

= A*

L L L L
k,m—lAk,Hl + Ak,mAk,(t+1)+1 -4,

k,m+t
Thus the result is true for all n € N. This proves the lemma.

It is often useful to extend the sequence of associated left k- Fibonacci numbers
backward with negative subscripts. In fact if we try to extend the associated left k- Fibonacci

sequence backward still keeping to the same rule, we get the following:

n A

-1 1-k

2 1—k+k?

-3 1-2k+ k% —k°

-4 1-2k +3k> -k’ +k*

-5 1-3k+3k> —4k> +k* -k

Thus the sequence of associated left k- Fibonacci numbers is bilateral sequence, since it

can be extended infinitely in both directions.

We next prove the divisibility property for A,ﬁ -

Lemma 4.3.7 4; | A, forall non-zero integers m,n .

k,mn
Proof: Let m be fixed and we will proceed by inducting on 7 .

For n=1. Then it is clear that 4, | A, .

.. The result is true for n =1. Assume that the result is true for alln =1,2,3,---,¢.

Thus 4, | A}, holds by assumption.
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To prove the result is true forn =¢+1. Using lemma 4.3.6, we get

L 4L
Ak,m(Hl) - A

k,mt+m
4L L L L L
- Ak,mt—lAk,m + Ak,m tAk,m+1 - Ak,mt+m—1
_ L L L L L L L L L
- Ak,mt—lAk,m + Ak,m tAk,m+1 - (Ak,mt—lAk,m—l + Ak,m tAk,m - Ak,mt+m—2)

L
k,mt

Continuously expand this expression; as by assumption 4, | A
Ay, divides the entire right side of the equation.

Hence A, | Af ., - Thus result is true for all n>1.

,m(t+1)
We next derive the formula for the sum of the squares of first n associated left k-

Fibonacci numbers.

Lemma 4.3.8 4+ A4, + 4 7 ++ 4 =%(A/f,n14f,n+1 -1).

— 4

k,m—1 )

. 1
Proof: Since we have A4, = E(AL

k,m+1

We observe that 4] > =A4; A

= A/f,m |:%(AkL,m+l - AkL,mfl ):l = %(AkL,mAkL,erl - AkL,mA/f,m—l)

Replacing m=1,2,3---n, we have
1
A/f,l2 = % (Ai,l AkL,z - Ai,l AkL,o)

1
AkL,22 = E(Ai,z AkL,z. - AkL,lAkL,z)

1
AkL,32 = E (A£,3 AkL,4 - AkL,ZAkL,3)

k,n—1

AL F = AL AL AL A )

- A,f’n_lA,f’n) . Adding all these equations, we get

k,n+1

PR

1
AP+ A+ A+ AL :%(A,inA,in+l —AL AL = %(A,f,nA,f,n+1 -1).
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The following result follows immediately from this lemma.

Lemma 4.3.9 4, 4, =1(modk).

kn+l —
Proof: We use Mathematical Induction to prove the result.

For n=1, we have 4, A, =1(1+k)=1+k =1(mod k)
Suppose it is true for n=r, Thus F F =1(mod k) holds.
NOW’ AkL,rJrlAkL,rJrZ = AkL,r+1 (kAkL,rJrl + AkL,r) .

2 L
+ Ak,r+1

k,r+1

A =1(mod k)
So the result is true for n=r+1 also. This proves the result for all integers .

Similarly, we can prove the second result.

We finally prove the extended Cassini’s identity.
Lemma 4.3.10 4/ A _ -4 > =k(-D)"".
Proof: We have A/, A, — Al = kA, + AL, ) A — AL
= kA A = A+ A
= Aokl = AL )+ A,
=—Ap A, A,
= (DA A2 = A -
Repeating the same process successively for right side, we get
4L

k,n—1

oAl

kon+1

- AkL,n2 = (_1)1 (AkL,nAkL,n—Z - AkL,n—12)
= (— 1)2(AkL,n—1AkL,n—3 - AkL,n—Zz)

= (_ 1)3 (AkL,n—ZAkL,n—4 - AkL,n—32)
= (D" (44 = Ay

=(=D"Ad-k)-1)
_ k(_1)n+1 ]

Page | 49



4.4 Generating function of associated left k- Fibonacci numbers:
The associated left k-Fibonacci number which is defined as A, = kA, + A, n>1
with initial condition 4;, =1 is a second order difference equation with constant coefficient.

Therefore, it has the characteristic equation x> —kx—1=0.

Lemma 4.4.1 The generating function for the generalized associated left k- Fibonacci

1+x—kx

sequence { A" 1" is given by f(x)=—— .
q { k’”}n:O g y f( ) l—kx—xz
Proof: We begin with the formal power series representation of generating function for{A,i n}

that is for {g,} .

f(x)= ZA,f,mx'” = ngx’" =g, +gXx+g,x +-
m=0 m=0

=1+ )x + (kg, + g,)x° + (kg, + g)x’ + (kg, + g,)x* +--

=1+ x+he(gx+g,x" + )+ x° (g, + g x + gyx7 +++0)

=1+ x+ k(g +gx+g,x +)—kx+x> (g, +gx+g,x +°)
=1+x+hkef (x)+x° f(x)—kx

1+x—kx

(l—kx—xz)f(x):1+x—kx:>f(x):m.

This is the generating function for the generalized associated left k- Fibonacci sequence
L o0
{Ak,n }n:O :
4.5 The associated right k-Fibonacci numbers:
Definition: We define the sequence {A,f’n} associate to right k-Fibonacci sequence {F,fn} as

4%, :%andA,ffn —FR A FR L, n=123...
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We observe that the expression A,f,n is the sum of the two consecutive right k-Fibonacci

numbers F,fn and its predecessor Fklfn_l. The members of the sequence{A,in} will be called
associated right k-Fibonacci numbers. An equivalent definition for the sequence {A,ﬁn} is

,if n=0

5?](‘ n :1
2Fk1,€n—1 +ka1fn_2,l'f n>2

1
k
AF, =11

Observe that A,f’n = Efn + Fk’fnfl = Fk’f

n

L HAE, k},en72 + F}fn72 + kF/fm3

=F k}fnq + F}fn72 +k(F, k}fn72 + Efns)

= AL, kAL,
This allows defining recursively the sequence of associated right k-Fibonacci numbers as
if n=0

Jif n=1
AR kAR, i n=2

1
k
follows A,f’n =<1

Members of associated right k- Fibonacci sequence {A,fn} will be called associated right

k- Fibonacci numbers. Some of them are

n A,f,n
0 1
k
1 1
2 2
3 2+k
4 243k
5 2+5k+k*
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6 2+ 7k +4k*

7 2+9k+9k* +k°

8 2+11k +16k* + 5k

9 2+13k +25k* + 14k + k*
10 2+15k +36k* +30k> + 6k*

Appendix-IV is computer program to obtain terms of associated right k- Fibonacci

sequence{B, } using the programming language MATLAB (R2008a).

4.6 Basic identities of associated right k- Fibonacci numbers:

Lemma 4.6.1 Sum of the first n associated right k - Fibonacci numbers is given by

1
R R R R R
Ak,l + Ak,z + Ak,3 oot Ak,n = E(Ak,nu_ 2).
Proof: From the recurrence relation of associated right k- Fibonacci numbers
1
R _ 4R R R R
Ak,n = Ak,n—l + kAk,n—Z’ nz2 Ak,o = ;’ Ak,l =1

R _ 4R R
Ak,z = Ak,l +kAk,0

R _ 4R R
Ak,3 = Ak,z + kAk,l

Alf,n—z = A:,n—3 + kA/in—4
Alf,n—l = Alf,n—z + kAlf,n—s
Ay = Al KA
Adding all these equations term by term, we get
A+ AL+ A+ + A
= AL AR (Af A4S+ + AL ) TKAL + 4L

= A kAL + (R (AL + AL+ A8 )= K4S, —(1+K) A,

— k(AL + AL+ AN ) = AS - kAL + ALY KAL)

k,n—1
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- 2 (A + kA/;Rn) 2 Ak n+2

k,n+1

R R R R
Ak,l + Ak,z + Ak,3 teeet Ak,n =7 (Ak 2 2).

Lemma 4.6.2 A4 + A4, + A, +-+ A4, = (Ak w2~ 2).

Proof: A, = Al +kAL, ,, n>2 Al = l,

A,il =1
Al = A kAL,

R _ 4R R
Ak,3 = Ak,z + kAk,l

Alf,Zn—l = Alf,2n—2 + kA/f,zn%

AL, = AL, kAL,
Adding all these equations term by term, we get
AL+ A+ A+ AL,

= Alf,l + (1 + k)(Af,l + A/f,z +eooet A/f,Zn—Z) + kAf,o"' Af,Zn—l

= A, +k(l) +(1+ KA+ A5+ + A5
A+ KA + A + A5,
—K(AL + A+ A5 =2+ KA+ AL+ A,
—k(Af F AL o+ A8, =2 (A4, + KA, ) — kAL,

_k(A§,1+AIfZ+ +A/on) 2- (Ak2n+1+kAIf,2n)
A£1+A£2+A£3+---+A,fn: (A“M 2).

This proves the lemma.

The following results follow immediately from above two lemmas.

Lemma 4.6.3 4/, =2(modm) and 4;',,,, = 2(mod m).

We next obtain the formulas for sum of first n associated right k-Fibonacci numbers with

only odd or even subscripts.
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1

Lemma 4.6.4 47 + A’ + Al +--+ 47, | = 2h (Af o

- kA,szl +k-2)

Proof: Wehave A}, =A _ +kA4 ', _,, n>2 Al =l, Al =1

Al =Af, + kA,f’1
Al = AL + kAL,

R R R
Ak,7 = Ak,6 + kAk,S

R R R
Ak,Zn—l = Ak,2n72 + kAk,Zn—3
Adding all these equations term by term,
R R R R
Ak,l + Ak,3 + Ak,S +eeet Ak,2n—1
R R R R R R R
= Ak,l + (Ak,2+ Ak,4 +ooet Ak,2n—2 ) + k(Ak,l + Ak,3 oot Ak,Zn—3)

. R R R R _ R R R R
. 2(Ak,l+ Ak,S + Ak,S R Ak,er) =1+ (Ak,1+ Ak,z +eet Ak,zn—l + Ak,Zn)

R R R R R R
+h(A + 45+ Ak,S tot AL, )= A, — kAk,Zn—l

k.2n+2

QR AR AR A e AR, =1 +%(AR 2y AR, kAR,

=%(Aff,2n+2+k—2)—A,i

2n+l1
1
AR AR AR v AR = (AR kAR k=2
i1 k.3 k,5 k,2n-1 k(2—k)( k2042 k,2n+1 )
1
Lemma 4.6.5 4, + A*, + A’ +--+ A4, = (AR, L~k AL, +k=2)
2T kA T 2 k2—k) "k :
Proof: Wehave Af, = A | +kd® ,. n>2 4~ = % AR =1

R _ 4R R
Ak,z = Ak,l + kAk,O
R _ 4R R
Ak,4 = Ak,3 + kAk,2
R _ 4R R
Ak,6 = Ak,S + kAk,4

A/f,Zn = Alf,2n—1 + kA/f,znfz
Adding all these equations term by term,

Page | 54



A7, +A,f,4 +A,§6 +eot 4,
= (Allj,ﬁ' A/f,} toeet Alf,2n—l)+kAlf,0 +k(A11:,2+ A1f,4 teeet Alf,Zn—Z)
2A0,+ Al 4+ A5, ) = (AF + 4, +---+A,f”2n)+k(%)

+h(A+ Al 4+ AN, ) — kAL,

(2- k)(Af,2 + A,§4 o+ A,f,n) = %(Afgmz -2)+1- kA/f,Zn

k2n+2

:%(AR N S )

1

m (A§,2n+2 -k 2A]§,2n +k-2).

R R R _
Ak,z + Ak,4 Tt Ak,Zn -

Now we obtain the value of multiplication of two consecutive associated right k -

Fibonacci numbers.

Lemma 4.6.6 4], 4!

k ,n+1

4R 2 R 2 2 R 2 n-1 4R 2 n 4R 4R
=A., kA, kAL A kKT AL KA A
n
=2k KA
r=2
R R R R R R
Proof: Wehave 4., = A, +kA;, , and A, = A4, +kA4.,
R 4R R R R R 2 R R R
Now Ak,nAk,n+1 = Ak,n (Ak,n+kAk,n71) = Ak,n + kAk,n—l (Ak,n—1+ kAk,nfz)
R 2 R 2 2 4R R R
= Ak,n +kAk,n—I +k Ak,n—Z (Ak,n—2+kAk,n—3)
R 2 R 2 2 4R 2 3 4R R R
= Ak,n +kAk,nq +k Ak,n72 +k Ak,n—} (Ak,n73+kAk,n74)
R 2 R 2 2 4R 2 n-1 4R /AR R
= Ak,n +kAk,n—1 +k Ak,n72 +etk Ak,l(Ak,1+Ak,0)
_ R2 R 2 2 R 2 n-2 R 2 n-1 (R 2 n (R 4R
=A., kA, KA A KTTEL KT ALK AL AL

= AL AL, I AL, e T ER BT Q) K ()W)
=2k" Y kAL
r=2

We now derive reduction formula for A5, .

R
- Ak,m+n—1

= kAl

k ,m—1

Lemma 4.6.7 A*

k,m+n

R R 4R
A4, + 4,4

k,n+1

Proof: Let mbe fixed and we will proceed by inducting on 7 .
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Also we know value 4/, = %, Ad =1, 4, =2

Taken=0. Then RHS = kA A + AL AL — AL = AL,
When n =1, we have

R
Ak,m+1

R 7 4R R R 4R R
Ak,m+l - kAk,m—lAk,l + Ak,mAk,z -4

R R
k,m = Ak,m + kAk,mfl
This is obviously true.

Now let us assume that the result is true for positive integersn =1,2,3,---,¢

R _ 1 4R R R 4R R
Ak,m+t = kAk,m—lAk,t +4 Ak,t+1 - Ak,m+t71 and

k,m

AR

k,m+(t—1)

7 4R R R 4R R
- kAk,m—lAk + Ak,mAk,t -4

;=1 k,m+t-2
We will show that it holds forn =¢+1. Now from above two equations , we have

+ kAR

k,m+(t-1)

R
Ak,m+t

= kAlf,m—l (Alf,t + kAlf,t—l) + Alf,m (Allf,m + kA}f,z)
— (4 + kA

m+t—1 ,m+t—2)

7 4R R R 4R R
- kAk,m—lAk,Hl + Ak,mAk,HZ -4

k,m+t

1 4R R R 4R R _ 4R
= kAk,m—lAk,Hl +4 Ak,(z+l)+l - Ak,m+(t+1)4 =4

em kom+(r+1) *
This is true for n=¢+1. This proves the lemma.

It is often useful to extend the sequence of associated right k- Fibonacci numbers
backward with negative subscripts. In fact if we try to extend the associated right k- Fibonacci

sequence backward still keeping to the same rule, we get the following:

n A,fn
1-k
-1 — k2
1
) F
_ 2
3 _1+l]c€4 k
72
4 1+2:5 k
_ 3
5 _1+3]f6 k
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Such associated right k- Fibonacci sequence can be extended infinitely in both directions

1s called Bilateral.

We next prove the divisibility property for 4/, .

Lemma 4.6.8 4, |A[,, forall integersm,n.

Proof: Letm be fixed and we will proceed by inducting onn .
If either m or n equal to zero, then the result is true.
Let for n=1, it is clear that 4 | A}, .
.. The result is true for n=1.

Assume that the result is true for n=1,2,3,---¢

Thus 4, | A}, holds by assumption.

k,mt

To prove the result is true forn =¢+1. Now using lemma 4.6.7, we get

R 4R 1 4R R R R 4R
Ak,m(H-I) - Ak,mt+m - kAk,mt—lAk,m + Ak,mtAk,m+1 Ak,mt+m—1
_ R R R R R R R R R
- kAk,mt—lAk,m + Ak,mtAk,erl - (kAk,mt—lAk,m—l + Ak,mtAk,m - Ak,mt+m—2 )

Continuing this process, Since by assumption 4, divides the entire right side of the equation.

Hence 4, | Af,, .- This proves the result for n>1.

We next establish the relation for sum of squares consecutive associated right k-
Fibonacci numbers.

Lemma 4.6.9 4’ +%Aﬁn+lz = %(Af,zm + 4.5,

Proof: We prove this result by the principal of mathematical induction.

For n =1, we have
R 2 l R 2 1 l 1 R R
LHS:Ak,l +2Ak,2 =1+z(4):z(k+4)=z(z4k,3 +Ak’2):RHS.

This proves the result for n=1.
We assume that it is true for all integers up to some positive integer ‘¢’.

A7 +%A,f,+12 = %(A,fml +A4},,) holds by assumption.

1 1
NOW A/f,le + ;AIf,HZZ = A/f,le + E(A/f,tﬂ + kAlf,t)z
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1
= Alf,le +;(A/5t+l

g +2kA,§,AR

ko t+1

+ szli tz)
1
_ R 2 R 2 R 2 R R R R
- Ak,z+1 + kAk,t + E(Ak,wl + kAk,zAk,Hl + kAk,zAk,tH)

1 1
= k(A,ff + p A,fmz) + ;[A,fm (A +KAS )+ kA,ftA,fm]

2t+1 S+

1 1
e (Al b AL 4L A AL AL

1
R R R 4R R R
= Ak,21+1 + Ak,21 + E(k Ak,tAk,t+1 + Ak,HlAk,Hz)

Since from lemma 4.6.7

1

. R 2 R
. Ak,t+1 +2Ak,z+2 ko t+1+1+1 t+1+t+1—1)

1
P= Al AL, +Z(AR + A
1
= ;(A:,ZHZ + kA}izm + A/izm + kA/f,z;)

1z R 1 & R
= ;(Ak,2t+3 + Ak,21+2) = ;(Ak,z(mm + Ak,2(t+1))

This proves the result by induction.
We finally prove the analogous of one of the oldest identities involving the Fibonacci
numbers — Cassini’s identity, which was discovered in 1680 by a French astronomer Jean-

Dominique Cassini.

Lemma 4.6.10 4°

k,n+1

AR = AR = (k) (k-2).
Proofi Al Al — AL = (AL KAL, DAL~ AL
= AL AL L~ AL TR
= A4 (AL = AL )+ kAL
= AL, (kAL )+ kAL,
= k(AL A= A0
We can repeat the above process on the right side.

AR A/f,n—l_ 14/:;2 = (_k)l (Af,n 'Allj,n—Z_ Alf,n—lz)

kn+1°

= (_k)z (Af,n—l : Af,n—3 - A/f,n—22)
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= (k)" (AL, AL L= A

-yt —%) )

. 1 -1
Since we have 4" =1, 4 = o A = kk_2

AL AL AL = (k) (k-2).

k,n+1°

n=2
Lemma 4.6.11 A7 =1+k> A'; n>2.

i=0

Proof: We prove this result by the principal of mathematical induction.
For n=2,wehave LHS = 4, =2=1+k&]=1+kf1§0 = RHS .

This proves the result for n=2.

We assume that it is true for all integers up to some positive integer ‘¢’.

t=2
Thus 4, =1+ kz A 12, holds by assumption.

i=0

Now we consider the right side of the result to be proved for n=7+1.
t—1
RHS =14k Y Af =1+k( Al + Al + AL+ 47 )
i=0

= A KA (AL AL+ A
= A, R4S A R(AS, + AL+ + A
= A kA, KA+ AL -+ A ).
Continuing this process on right hand side, we get
.. RHS=F +kF|_ =F~, =LHS
.. The result is true for n =¢+1. This proves the result by induction.

Lemma 4.6.12 ged (4], 4f

k,n2*Tk,n+l

)=1, ¥V n=0,1,23,..
Proof: Suppose that 4;', and 4;',,, are both divisible by a positive integer d.

Then clearly A,f - A,f w = A,f, o kAf, il Alf,n = kAlf,n—l

n+l

will also be divisible by d. Then right hand side of this result is divisible by d.
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This gives d / k4, .

First we claim that 4, is always relatively prime to .

n-2
From the lemma 4.6.11, we have 4", =1+ kz Al n=2.

i=0
If some integer d > lis divisor of both 4, and k, then from above result it is clear that d

must divide 1, a contradiction. Thus A4;°, is always relatively prime to k= d | A}, _, .

Continuing this argument we see thatd | A}, ,, d | A;,_; and so on. Eventually, we must
have d | A}, . Since 4], =1we get d =1, this proves the required result.

4.7 Generating function of associated right k- Fibonacci numbers:

Lemma 4.7.1 The generating function for the generalized associated right k- Fibonacci

1+ (k—1)x

sequence{A,fn }10 is given by f(x)= Hox k)

Proof: We begin with the formal power series representation of generating function for{A,fn}

that is for {g,} .

f(x)= ;Aﬁmxm = mi:ogmx’" =g, +gXx+g,x +-
=%+(l)x+(gl+kg0)x2+(g2+kgl)x3+(g3+kg2)x4+---
=%+x+x(g1x+g2x2+---)+kxz(g0+g1x+g2x2+---)

1
=E+x+x(g0+g1x+g2x2 +---)—%+/’cxz(g0+g1x+g2x2 +-00)

1+ kx ) X

= +xf (x) + kx” f (x) .
(e x— ko Itk _x _ I+(k-Dx
So(l=x—kx7) f(x) p k:>f(x) k(l—x—kxz)'

This is the generating function for the generalized associated right k- Fibonacci sequence

{Ali” }j:o )

Page | 60



C hapter- 5

Golden proportions for the
Generalized
left and right k-Fibonacci

numbers



It is known fact that the ratios of consecutive terms of Fibonacci sequence converges to
the fixed ratio [12, 43]. In this chapter we consider the further generalization of recursive
formula of k-Fibonacci numbers. We derive the ‘golden proportion’ for the whole family of this

new generalized sequence.
5.1 Introduction:

It is well-known that the ratio of consecutive terms of a Fibonacci sequence converges to

+5

Golden ratio ¢ = IT which is the positive root of the equation x> —x—1=0.

Stakhov [39, 41] defined the p — Fibonacci numbers F,(n) by the recurrence relation

1 ;1<n<p+1,
EO=E -+ F N ’
,(n=D+F (n-=p-1) ;n>p+1
wheren=1,2,3,---
It can be seen that by taking p=1 , the recurrence relation becomes

F(n)=F(n-1)+F(n-2), n>2; F(1)= F(2) =1, which is a well known Fibonacci sequence.

The values of F,(n) for p=1,2,....,5 and for first 15 values of n are shown below for the ready

reference.

> 123 4 5 6 7 8 9 10 11 12 13 14 15
Fm|l 1 2 3 5 8 13 21 34 55 89 144 233 377 610
Eml1 11 2 3 4 6 9 13 19 28 41 60 8 129
Fml|ll 11 1 2 3 4 5 7 10 14 19 2 36 50
Famli1 1 1 1 2 3 4 5 6 8 11 15 20 26
Fsm)ly 1 1 1 1 1 2 3 4 5 6 7 9 12 16

[Table 1: Values of ¥, (n)]

. i F
Stakhov also shown that F,(n) satisfies lim ﬂ:d) , where the golden p-
n—>wFmn-1) °

p+1

proportion ¢, is the root of x =x"+1.

De Villiers [9] generalized the recursive formula to F

n+t+1

=F ,+F , where

t =1,2,3,...; and made the interesting discovery that for each member of this family, the ratios
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. .. 1
of consecutive terms converge to the positive roots of x'™ — x' —=1=0.

. . F . . .
However, based on the assumption that lim —**L exists, only a partial proof to this

X—>00
n+t

result was given. He suggested a simple proof for the case where & is even.

Later Falcon [14] considered the same problem and provided the complete proof of the
problem. In this chapter we generalize the above recurrence relation and consider the problem of
finding the ‘golden proportion’ for the particular family of this generalized sequence.

5.2 Some preliminaries of left k- Fibonacci numbers:

First we consider the particular generalization of recursive formula of F' as

Gn+a+1 -

we consider the left k-Fibonacci numbers for the case k=2, 3, ... then we observe that ratio of

kG, +Gy; where a is any positive integer. Clearly G, = F! when G, =0, G, =1.If

consecutive left k-Fibonacci numbers converge to a fixed ratio. This fact is presented in the

following table for £ =2,3:

0 0 0

1 1 2 1 3

2 2 2.5 3 3.33

3 5 2.4 10 3.3

4 12 2416 33 3.3030
5 29 2.413793103 109 3.302752
6 70 2.414285714 360 3.30277
7 169 2414201183 1189 3.302775
8 408 2.414215686 3927 3.302775
9 985 2.414213198 12970 3.302775
10 2378 2414213625 42837 3.302775
11 5741 2.414213557 141481 3.302775
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kG

We consider the more generalized recurrence relation given by G nta

n+a+l ~ +Gn s
where a is any positive integer. By substituting n for n+a +1, this recurrence relation becomes
G, =kG,_,+G, (5.2.1)

This is a difference equation with characteristic equation x” = kx" " +x" ",

This is same as

x =k + 1. (5.2.2)
We write it as x“ (x — k) =1, which implies x* = =
Thus solving (5.2.2) is equivalent to solving the system
S (x)=ﬁ; g(x)=x" (5.2.3)

This is same as finding intersection of these curves defined for a =1,2,3,... We now
consider the different cases when a is even or odd.

If a is even, the graph of g(x) = x“is a parabolic type curve. In this case, the intersection of
two curves of (5.2.3) is shown in figures 1 and 2.

Also if a is odd, the graph of g(x) = x“is a curve of cubic type. In this case, the intersection

of two curves of (5.2.3) is shown in figures 3 and 4.
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Figure-2 [a even, k odd]
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Figure-3 [a odd, k even]
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Figure-4 [a is odd, £ odd]




It is clear from these figures that when a is even, both f(x)and g(x) are symmetric about

the y-axis. In this case, system (5.2.3) has one real roots x = M ; for some real number M such

that, M > k.

Also when a is odd, system (5.2.3) has two real roots x =M ,—M,, where0 <M, <1 and

M >k.
We summarize this in the following table.
Number of
¢ k Intersecting Roots
Points

Even Even 1 x=M; M >k

Even Odd 1 x=M; M >k

Odd Even 2 x=M,-M;0<M <1,M>k

Odd Odd 2 x=M,-M;0<M, <1,M>k

[Table 3: Values of Roots]

In short: The roots of (5.2.3) are
(a) One positive real number M, where M >k .

(b) One real number —M;, where 0 < M, <1; when a is odd.

At this point we note that total numbers of roots of (5.2.2) area +1.
The roots of (5.2.2) other than above are simple complex numbers z whose modulus is

always less than M.
We express these a (ora—1, as the case may be) complex roots in exponent form as

z =re”: where r = Ja’+b’ , and . =tan™ b—’
j=re s PTG 0 = '

a,

Also v <M; forall j=1,2,3,...,a(ora—1).

Iim G
In this chapter we prove that —ntart — MU e =1, 2,3, ... for some real number
n—>wo G

M>k.
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5.3 The main result for left k.- Fibonacci numbers:

Before we prove the main result, we first prove some intermediate results which when
combined will give the main result.
Throughout we consider #to be any fixed positive integer; a is any integer; M > k and
O0<M, <l.
lim

Lemma 5.3.1 When «a is even, —nrart A e=1,2,3,....
n %w Gn+a

Proof: In this case the characteristic equation (5.2.2) of difference (5.2.1) has one real root M such
that M > k.
Taking into account the above discussion, by the theory of equations [13], we can say that

solution of the difference equation (5.2.1) is of the type

a+1

_ n n
G,=aM"+) az".
j=2

lim G lim @G
OW, +a+t — _n_
n—->»o G, n—o>oG,,
aM"+)>» az"
: 1 J7
_lim =
- 71 —> 00 a+l1
n—t n—t
M+ a7
j=2
a+l1 n
z.
a+ > a. |~
lim 1 ]Z_;‘ ’(Mj
T noow +l "
1 < z, 1
al Mt +Za] H Mt
j=2
a+l 7 n 0
n
1 arSal | e
m = M
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) lim (7 ! lim (» "~
Since,r; <M , forall j=1,2,3,..a+1, — | =0and L1 =0.
: n—ool M n—> 00

lim G a

Thus, et — =M" which proves the result.
n—->o G, 1
a| —
M
) lim ,
Lemma 5.3.2 When « is odd, —att MU t=1,2,3, ... .
n—>o G

Proof: When a is odd, it is observed that the characteristic equation (5.2.2)

has two real roots M and —M, such that M > kand 0 <M, <1.

a+l

Thus we write the solution of (5.2.2) as G, =aM" +a,(-M )" + Zajz;‘ .
j=3

n

lim Iim @G
OW n+a+t — n

9
n—>o G, n—>woG,

a+l
, aM"+a,(-M,)" + a,z}
_ lim = J7

n— o

a+l

aM"" +a,(-M,))"" + Z az”
Jj=3

-M a4l z. "
a +a LI +Y a.| L
lim ! 2( M j ,z; -’[M]

_I’l—)OO 1 -M n—t 1 a+l z. n-t 1
GI(M)+C’2( Mlj (Mf}_jz_;a-’{ﬁj M

_lim
= n — oo _ n—t atl B it |
a, Lt +a2( M1j 1t +Zaj ) Lt ez(n—k)ej
M M M) =M M

lim (7 Y i -\
Since,r; <M , forall j=3,4,5,...,a+1, (—'j =0and lim (ij =0.
n—ol M

-M M
Also since0< M, <land M >k, we have —1<71<Oand 0<ﬁ1<1'
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lim (—p, Y lim (p "
This implies ( ! ) =0and (—1) =0.
n—> oo n—wo\ M

lim
Thus, Gn+a+t — al :Mt )

1o G 1
al p
M

Corollary 5.3.3 For the sequence{G, | of Fibonacci numbers we have
hm Gn+l _

_¢:1+\/§.

n—>wo G, 2

Proof: By consideringa =11n (5.2.1) we get the sequence of Fibonacci numbers.

Now by considering ¢ =1in lemma 5.3.2, we have lim% =M,
e n+l

1
where M is the root of (5.2.2). Clearly, x = +T\/g = @is the root of x* = x+1.

This proves the corollary.

5.4 Some preliminaries of right k- Fibonacci numbers:

In this part of the chapter, we consider another interesting generalization of recursive

formula of Efn as H H,  ,+kHy; where a is any positive integer. Clearly H, = F,fn

n+a+l ~

when H,=0, H =1.

If we consider the right k-Fibonacci numbers for the case k=2, 3,... then we observe that

ratio of consecutive right k-Fibonacci numbers converge to a fixed ratio. This fact is presented in

the following table for £ =2,3:

’ H2,n ’ H3,n
0 0 0
1 1 1 1 1
2 1 3 1 4
3 3 1.6666 4 1.75
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4 5 2.2 7 2.714285
5 11 1.90909 19 2.105263
6 21 2.047619 40 2.425

7 43 1.976744186 97 2.237113
8 85 2.011764706 217 2.341014
9 171 1.99415204 508 2.281496
10 341 2.002932551 1159 2.3149266
11 683 1.998535871 2683 2.2959374
12 1365 2.000732601 6160 2.30665585
13 2731 1.999633834 14209 2.3005841
14 5461 32689

[Table 4: Values of Ratio]
Here we consider the more generalized recurrence relation = H,, +kHp; where

a is any positive integers.

By substituting n for n+a +1, this recurrence relation becomes

H =H_ +kH (5.4.1)

This is a difference equation with characteristic equation x" = x"" + kx"*".

This is same as XM =x"+k. (5.4.2)

=

We write it as x“ (x—1) = k , which implies x* =

—

X —

Thus solving (5.2.2) is equivalent to solving the system

=g = (543)
This is same as finding intersection of these curves defined fora =1,2,3,...
We now consider the different cases when a is even or odd.
If a is even, the graph of g(x)=x" is a parabolic type curve. In this case, the intersection
of two curves of (5.4.3) is shown in figures 5 and 6.

Also if a is odd, the graph of g(x)=x“ is a curve of cubic type. In this case, the

intersection of two curves of (5.4.3) is shown in figures 7 and 8.
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Figure: 6 [a is even, k odd]
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Figure: 8 [a is odd, k odd]
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It is clear from these figures that when a is even both f(x)and g(x) are symmetric about

the y-axis. In this case, system (5.4.3) has one real root x =M ; for some real number M such
that, M >1.When a is odd, system (5.4.3) has two real roots x =M, —M,, where M > M, >1.

We summarize this in the following table.

Number of
a k intersecting Roots
Points
Even Even 1 x=M;M >1
Even Odd 1 x=M;M >1
Odd Even 2 x=M,-M; M>M, >1
Odd Odd 2 x=M,-M;M>M,>1

[Table 5: Values of Roots]

In short: The roots of (5.4.3) are

(a) One positive real number M, where M >1.

(b) One real number —M;, where M > M, >1; when a is odd.

At this point we note that total numbers of roots of (5.4.3) area+1.
The roots of (5.4.2) other than above are simple complex numbers z whose modulus is always less

than M.

We express thesea (ora—1, as the case may be) complex roots in exponent form as

a,

) b.
z; :rje’e”; where r, =,/a’+b? , and 0, =tan™ [—’Jand also r, <M ; for all j=1,2,3,...,a (or
a—1).
Iim @G ,
In fact we prove that —maet = Mo t=1, 2,3, ...; for some real number M >1.
n—wo G

n+a

5.5. The main result for right k-Fibonacci numbers:

Before we prove the main result, we first prove some intermediate results which when

combined will give the main result.
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Throughout we consider #to be any fixed positive integer; a is any integer; M >1and
M>M =>1.

lim
Lemma 5.5.1 When a is even, et — MU ef=1,2,3,....
n H w Hn+a

Proof: Since a is even, the characteristic equation (5.4.2) of difference (5.4.1) has one real root M

such that M >1.

Taking into account the above discussion, by the theory of equations [13] we can say that

solution of the difference equation (5.4.1) is as under:

a+l

_ n n
H, =aM +Zajzj :
J=2

Now hm ntatt _ hm Hn

b
n—>owo H = n—>woH,
a+1
alM”+ZajZ?
o

a+l

n—t n—t
aM"™" + Z az;
Jj=2

B lim

n— oo

a+l 7. n .
a +Za R g
. 1 i
lim =

_n—)OO 1 a+l 7. " 1 (=)0,
“{ij*Zaf{A} (Mj "

. lim ( ! lim (r \~
Since, r, <M , forall j=1,2,3,.a+1, — | =0and L | =0.
n—ol M n— oo

hm H +a+t al t .
Thus, I-; o = N~ M" | which proves the result.
o0
noe H,, o, ( j

Mt
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lim
Lemma 5.5.2 When a is odd , et — MU ef=1,2,3,....
n % w Hn+a

Proof: When a is odd. It is seen that the characteristic equation (5.4.2) has two real roots M and

—M, such that M >M, >1.

a+l

Thus we write the solution of (5.2.2) as H, =aM" +a,(—-M )" + Zajz;‘ .

Jj=3

lim Im H
NOW’ n+a-+t — n

n—wo H, = n—o>woH_

a+l
, aM"+a,(-M,)" +Y a,z}
~ lim = J7J

n— o

a+l
aM"" +a,(-M))"" + Zajzj_’

Jj=3

_M n a+l z. n
+a,| —+| + | =L
~lim “ az( M) ]Z_;‘a’[Mj
n—> oo 1 MY j a+l z. ”"( 1
a +a 1 +>a |-
(Mj (Mj (M’ Z M) M
-M n a+l 7. n ind,
lim a1+a2( Mlj +]Z3aj{]\j[] e

_I’l—)OO 1 -M n—i 1 a+l1 7. " 1 (=0, .
4| | T4 : ‘ +Zaj = 'yl e
M M M) =N\ M) M

lim (r Y li S\
Since, r, <M , forall j=3,4,5,. a+1, (—1] =0and (r—’j =0.

n— oo

M M
Also since M > M, >1, we have -1 <——=+<0and 0<—-<1.
M M

lim (—p Y lim (pm "
This implies ( lj =0and (—lj =0.

n—o>owo\ M n—o>oo\ M
Iim H
Thus, nta+t al :Mt .
n % w Hn+a 1
a, 7w

It is now mere a formality to state the main result of this chapter.
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Corollary5.5.3 For the sequence {H,,}" of Fibonacci numbers we have

lim H _¢_1+\B
n—ow H 2

Proof: By consideringa =11in (5.4.1) we get the sequence of Fibonacci numbers.

Now by considering? =1in lemma 5.5.2, we have lim Ay =M , where M is the root of (5.4.2).

n—0 Hn+1

1
+\/§:¢ is the root of x* = x +1.

Clearly, x=

This proves the corollary.
Scope:

If we consider the more generalized recurrence relations as G,,, =kG, ,+G, and

H,,=H, A +kH, ; where a,b are positive integers such that b>a , then there are three real

parameters a,band k which are to be considered. In this case also we can find the corresponding
‘golden proportion’ for the whole class of generalized Fibonacci sequence. There is a great scope

of work possible in this case.

Conclusions:
New generalized k- Fibonacci and associated k- Fibonacci sequences has been introduced

and deducted their identities and results.
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Appendix-I

Computer Program to obtain terms of left k- Fibonacci sequence {F,} is

presented here using the programming language MATLAB (R2008a).

clear all
clc
syms Kk;

fOo = 0; f1 = 1;

n = input ('Enter the number of terms:');
disp(['FO',"' = ",numZ2str (£0)1])
disp(['F1',' = ',num2str(fl)]);

for 1=2:n
F = k*fl + £0;

Fn = expand (F);

disp(['F',num2str(i),"' = ',char(Fn)]);
f0=£f1; fl1 = Fn;

end
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Appendix-Il

Computer Program to obtain terms of right k- Fibonacci sequence{G,}is

presented here using the programming language MATLAB (R2008a).

clear all
clc
syms k;

GO = 0, G1 = 1;

n = input ('Enter the number of terms:');
disp(['GO',"'" = '",num2str(GO)]);
disp(['Gl',' = ',num2str(Gl)]);

for 1=2:n
G = Gl + k*GO;

Gn = expand(G) ;

disp(['G',num2str(i),"' = ',char(Gn)]);
GO0=Gl; Gl = Gn;

end
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Appendix-lll

Computer Program to obtain terms of associated left k- Fibonacci sequence

{4,} is presented here using the programming language MATLAB (R2008a).

clear all
clc
syms Kk;

AO = 1; Al = 1;

n = input ('Enter the number of terms:');
disp(['AO0', "' = ",numZ2str (A0) 1)
disp(['Al',' = ',num2str (Al)]);

for 1=2:n
A = k*Al + AO;
An = expand (A);
disp(['A',num2str(1i),"' = ',char(An)]);
AO=Al; Al = An;

end
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Appendix-1V

Computer Program to obtain terms of associated right k- Fibonacci

sequence {B,} is presented here using the programming language MATLAB

(R2008a).

clear all
clc
syms k;

BO = 1/k; Bl = 1;

n = input ('Enter the number of terms:');
disp(['BO',' = '",char(B0)]);
disp(['B1',' = ',numZ2str(B1)]);

for 1=2:n
B = B1 + k*BO;

Bn = expand(B);

disp(['B',num2str(i),"' = ',char(Bn)]);
BO=Bl; Bl = Bn;

End
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